| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvco2 | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 3 |  | simpll | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹 ) | 
						
							| 4 |  | df-fn | ⊢ ( 𝐺  Fn  𝐴  ↔  ( Fun  𝐺  ∧  dom  𝐺  =  𝐴 ) ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( Fun  𝐺  ∧  dom  𝐺  =  𝐴 )  ∧  𝑋  ∈  𝐴 )  →  Fun  𝐺 ) | 
						
							| 6 |  | eleq2 | ⊢ ( 𝐴  =  dom  𝐺  →  ( 𝑋  ∈  𝐴  ↔  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 7 | 6 | eqcoms | ⊢ ( dom  𝐺  =  𝐴  →  ( 𝑋  ∈  𝐴  ↔  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 8 | 7 | biimpd | ⊢ ( dom  𝐺  =  𝐴  →  ( 𝑋  ∈  𝐴  →  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( Fun  𝐺  ∧  dom  𝐺  =  𝐴 )  →  ( 𝑋  ∈  𝐴  →  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ( Fun  𝐺  ∧  dom  𝐺  =  𝐴 )  ∧  𝑋  ∈  𝐴 )  →  𝑋  ∈  dom  𝐺 ) | 
						
							| 11 | 5 10 | jca | ⊢ ( ( ( Fun  𝐺  ∧  dom  𝐺  =  𝐴 )  ∧  𝑋  ∈  𝐴 )  →  ( Fun  𝐺  ∧  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 12 | 4 11 | sylanb | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( Fun  𝐺  ∧  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( Fun  𝐺  ∧  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 14 |  | dmfco | ⊢ ( ( Fun  𝐺  ∧  𝑋  ∈  dom  𝐺 )  →  ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ↔  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ↔  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹 ) ) | 
						
							| 16 | 3 15 | mpbird | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  𝑋  ∈  dom  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 17 |  | funcoressn | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  Fun  ( ( 𝐹  ∘  𝐺 )  ↾  { 𝑋 } ) ) | 
						
							| 18 |  | df-dfat | ⊢ ( ( 𝐹  ∘  𝐺 )  defAt  𝑋  ↔  ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ∧  Fun  ( ( 𝐹  ∘  𝐺 )  ↾  { 𝑋 } ) ) ) | 
						
							| 19 |  | afvfundmfveq | ⊢ ( ( 𝐹  ∘  𝐺 )  defAt  𝑋  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 20 | 18 19 | sylbir | ⊢ ( ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ∧  Fun  ( ( 𝐹  ∘  𝐺 )  ↾  { 𝑋 } ) )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 21 | 16 17 20 | syl2anc | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 22 |  | df-dfat | ⊢ ( 𝐹  defAt  ( 𝐺 ‘ 𝑋 )  ↔  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) ) ) | 
						
							| 23 |  | afvfundmfveq | ⊢ ( 𝐹  defAt  ( 𝐺 ‘ 𝑋 )  →  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 24 | 22 23 | sylbir | ⊢ ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  →  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 26 | 2 21 25 | 3eqtr4d | ⊢ ( ( ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 27 |  | ianor | ⊢ ( ¬  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ↔  ( ¬  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∨  ¬  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) ) ) | 
						
							| 28 | 14 | funfni | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ↔  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹 ) ) | 
						
							| 29 | 28 | bicomd | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ↔  𝑋  ∈  dom  ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 30 | 29 | notbid | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ¬  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ↔  ¬  𝑋  ∈  dom  ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 31 | 30 | biimpd | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ¬  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  →  ¬  𝑋  ∈  dom  ( 𝐹  ∘  𝐺 ) ) ) | 
						
							| 32 |  | ndmafv | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) | 
						
							| 33 | 31 32 | syl6com | ⊢ ( ¬  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  →  ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) ) | 
						
							| 34 |  | funressnfv | ⊢ ( ( ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ∧  Fun  ( ( 𝐹  ∘  𝐺 )  ↾  { 𝑋 } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) ) | 
						
							| 35 | 34 | ex | ⊢ ( ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ∧  Fun  ( ( 𝐹  ∘  𝐺 )  ↾  { 𝑋 } ) )  →  ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) ) ) | 
						
							| 36 |  | afvnfundmuv | ⊢ ( ¬  ( 𝐹  ∘  𝐺 )  defAt  𝑋  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) | 
						
							| 37 | 18 36 | sylnbir | ⊢ ( ¬  ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  ∧  Fun  ( ( 𝐹  ∘  𝐺 )  ↾  { 𝑋 } ) )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) | 
						
							| 38 | 35 37 | nsyl4 | ⊢ ( ¬  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V  →  ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) ) ) | 
						
							| 39 | 38 | com12 | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ¬  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V  →  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) ) ) | 
						
							| 40 | 39 | con1d | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ¬  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) ) | 
						
							| 41 | 40 | com12 | ⊢ ( ¬  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } )  →  ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) ) | 
						
							| 42 | 33 41 | jaoi | ⊢ ( ( ¬  ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∨  ¬  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  →  ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) ) | 
						
							| 43 | 27 42 | sylbi | ⊢ ( ¬  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  →  ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( ¬  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  V ) | 
						
							| 45 |  | afvnfundmuv | ⊢ ( ¬  𝐹  defAt  ( 𝐺 ‘ 𝑋 )  →  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) )  =  V ) | 
						
							| 46 | 22 45 | sylnbir | ⊢ ( ¬  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  →  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) )  =  V ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ¬  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  →  V  =  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ¬  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  V  =  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 49 | 44 48 | eqtrd | ⊢ ( ( ¬  ( ( 𝐺 ‘ 𝑋 )  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { ( 𝐺 ‘ 𝑋 ) } ) )  ∧  ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 50 | 26 49 | pm2.61ian | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 51 |  | eqidd | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  𝐹  =  𝐹 ) | 
						
							| 52 | 4 9 | sylbi | ⊢ ( 𝐺  Fn  𝐴  →  ( 𝑋  ∈  𝐴  →  𝑋  ∈  dom  𝐺 ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  𝑋  ∈  dom  𝐺 ) | 
						
							| 54 |  | fnfun | ⊢ ( 𝐺  Fn  𝐴  →  Fun  𝐺 ) | 
						
							| 55 | 54 | funresd | ⊢ ( 𝐺  Fn  𝐴  →  Fun  ( 𝐺  ↾  { 𝑋 } ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  Fun  ( 𝐺  ↾  { 𝑋 } ) ) | 
						
							| 57 |  | df-dfat | ⊢ ( 𝐺  defAt  𝑋  ↔  ( 𝑋  ∈  dom  𝐺  ∧  Fun  ( 𝐺  ↾  { 𝑋 } ) ) ) | 
						
							| 58 |  | afvfundmfveq | ⊢ ( 𝐺  defAt  𝑋  →  ( 𝐺 ''' 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 59 | 57 58 | sylbir | ⊢ ( ( 𝑋  ∈  dom  𝐺  ∧  Fun  ( 𝐺  ↾  { 𝑋 } ) )  →  ( 𝐺 ''' 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 60 | 53 56 59 | syl2anc | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝐺 ''' 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 61 | 60 | eqcomd | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ''' 𝑋 ) ) | 
						
							| 62 | 51 61 | afveq12d | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ''' ( 𝐺 ''' 𝑋 ) ) ) | 
						
							| 63 | 50 62 | eqtrd | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ''' 𝑋 )  =  ( 𝐹 ''' ( 𝐺 ''' 𝑋 ) ) ) |