| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvco2 |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 2 |
1
|
adantl |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 3 |
|
simpll |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ) |
| 4 |
|
df-fn |
⊢ ( 𝐺 Fn 𝐴 ↔ ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) ) |
| 5 |
|
simpll |
⊢ ( ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → Fun 𝐺 ) |
| 6 |
|
eleq2 |
⊢ ( 𝐴 = dom 𝐺 → ( 𝑋 ∈ 𝐴 ↔ 𝑋 ∈ dom 𝐺 ) ) |
| 7 |
6
|
eqcoms |
⊢ ( dom 𝐺 = 𝐴 → ( 𝑋 ∈ 𝐴 ↔ 𝑋 ∈ dom 𝐺 ) ) |
| 8 |
7
|
biimpd |
⊢ ( dom 𝐺 = 𝐴 → ( 𝑋 ∈ 𝐴 → 𝑋 ∈ dom 𝐺 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) → ( 𝑋 ∈ 𝐴 → 𝑋 ∈ dom 𝐺 ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ dom 𝐺 ) |
| 11 |
5 10
|
jca |
⊢ ( ( ( Fun 𝐺 ∧ dom 𝐺 = 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → ( Fun 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) ) |
| 12 |
4 11
|
sylanb |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( Fun 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( Fun 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) ) |
| 14 |
|
dmfco |
⊢ ( ( Fun 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) → ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ) ) |
| 16 |
3 15
|
mpbird |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ) |
| 17 |
|
funcoressn |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ) |
| 18 |
|
df-dfat |
⊢ ( ( 𝐹 ∘ 𝐺 ) defAt 𝑋 ↔ ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ) ) |
| 19 |
|
afvfundmfveq |
⊢ ( ( 𝐹 ∘ 𝐺 ) defAt 𝑋 → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) |
| 20 |
18 19
|
sylbir |
⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) |
| 21 |
16 17 20
|
syl2anc |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) |
| 22 |
|
df-dfat |
⊢ ( 𝐹 defAt ( 𝐺 ‘ 𝑋 ) ↔ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ) |
| 23 |
|
afvfundmfveq |
⊢ ( 𝐹 defAt ( 𝐺 ‘ 𝑋 ) → ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 24 |
22 23
|
sylbir |
⊢ ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) → ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 26 |
2 21 25
|
3eqtr4d |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) |
| 27 |
|
ianor |
⊢ ( ¬ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ↔ ( ¬ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ) |
| 28 |
14
|
funfni |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ) ) |
| 29 |
28
|
bicomd |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ↔ 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ) ) |
| 30 |
29
|
notbid |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ↔ ¬ 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ) ) |
| 31 |
30
|
biimpd |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 → ¬ 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ) ) |
| 32 |
|
ndmafv |
⊢ ( ¬ 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) |
| 33 |
31 32
|
syl6com |
⊢ ( ¬ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 → ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) ) |
| 34 |
|
funressnfv |
⊢ ( ( ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) |
| 35 |
34
|
ex |
⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ) → ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ) |
| 36 |
|
afvnfundmuv |
⊢ ( ¬ ( 𝐹 ∘ 𝐺 ) defAt 𝑋 → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) |
| 37 |
18 36
|
sylnbir |
⊢ ( ¬ ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) |
| 38 |
35 37
|
nsyl4 |
⊢ ( ¬ ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V → ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ) |
| 39 |
38
|
com12 |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V → Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ) |
| 40 |
39
|
con1d |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) ) |
| 41 |
40
|
com12 |
⊢ ( ¬ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) → ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) ) |
| 42 |
33 41
|
jaoi |
⊢ ( ( ¬ ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) → ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) ) |
| 43 |
27 42
|
sylbi |
⊢ ( ¬ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) → ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) ) |
| 44 |
43
|
imp |
⊢ ( ( ¬ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = V ) |
| 45 |
|
afvnfundmuv |
⊢ ( ¬ 𝐹 defAt ( 𝐺 ‘ 𝑋 ) → ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) = V ) |
| 46 |
22 45
|
sylnbir |
⊢ ( ¬ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) → ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) = V ) |
| 47 |
46
|
eqcomd |
⊢ ( ¬ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) → V = ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ¬ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → V = ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) |
| 49 |
44 48
|
eqtrd |
⊢ ( ( ¬ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) |
| 50 |
26 49
|
pm2.61ian |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) ) |
| 51 |
|
eqidd |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 = 𝐹 ) |
| 52 |
4 9
|
sylbi |
⊢ ( 𝐺 Fn 𝐴 → ( 𝑋 ∈ 𝐴 → 𝑋 ∈ dom 𝐺 ) ) |
| 53 |
52
|
imp |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ dom 𝐺 ) |
| 54 |
|
fnfun |
⊢ ( 𝐺 Fn 𝐴 → Fun 𝐺 ) |
| 55 |
54
|
funresd |
⊢ ( 𝐺 Fn 𝐴 → Fun ( 𝐺 ↾ { 𝑋 } ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Fun ( 𝐺 ↾ { 𝑋 } ) ) |
| 57 |
|
df-dfat |
⊢ ( 𝐺 defAt 𝑋 ↔ ( 𝑋 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝑋 } ) ) ) |
| 58 |
|
afvfundmfveq |
⊢ ( 𝐺 defAt 𝑋 → ( 𝐺 ''' 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 59 |
57 58
|
sylbir |
⊢ ( ( 𝑋 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝑋 } ) ) → ( 𝐺 ''' 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 60 |
53 56 59
|
syl2anc |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐺 ''' 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 61 |
60
|
eqcomd |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ''' 𝑋 ) ) |
| 62 |
51 61
|
afveq12d |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ''' ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ''' ( 𝐺 ''' 𝑋 ) ) ) |
| 63 |
50 62
|
eqtrd |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ''' 𝑋 ) = ( 𝐹 ''' ( 𝐺 ''' 𝑋 ) ) ) |