Step |
Hyp |
Ref |
Expression |
1 |
|
dmressnsn |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 → dom ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) = { ( 𝐺 ‘ 𝑋 ) } ) |
2 |
|
df-fn |
⊢ ( ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) Fn { ( 𝐺 ‘ 𝑋 ) } ↔ ( Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ∧ dom ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) = { ( 𝐺 ‘ 𝑋 ) } ) ) |
3 |
2
|
simplbi2com |
⊢ ( dom ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) = { ( 𝐺 ‘ 𝑋 ) } → ( Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) → ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) Fn { ( 𝐺 ‘ 𝑋 ) } ) ) |
4 |
1 3
|
syl |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 → ( Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) → ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) Fn { ( 𝐺 ‘ 𝑋 ) } ) ) |
5 |
4
|
imp |
⊢ ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) → ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) Fn { ( 𝐺 ‘ 𝑋 ) } ) |
6 |
5
|
adantr |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) Fn { ( 𝐺 ‘ 𝑋 ) } ) |
7 |
|
fnsnfv |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → { ( 𝐺 ‘ 𝑋 ) } = ( 𝐺 “ { 𝑋 } ) ) |
8 |
7
|
adantl |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → { ( 𝐺 ‘ 𝑋 ) } = ( 𝐺 “ { 𝑋 } ) ) |
9 |
|
df-ima |
⊢ ( 𝐺 “ { 𝑋 } ) = ran ( 𝐺 ↾ { 𝑋 } ) |
10 |
8 9
|
eqtrdi |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → { ( 𝐺 ‘ 𝑋 ) } = ran ( 𝐺 ↾ { 𝑋 } ) ) |
11 |
10
|
reseq2d |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) = ( 𝐹 ↾ ran ( 𝐺 ↾ { 𝑋 } ) ) ) |
12 |
11 10
|
fneq12d |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) Fn { ( 𝐺 ‘ 𝑋 ) } ↔ ( 𝐹 ↾ ran ( 𝐺 ↾ { 𝑋 } ) ) Fn ran ( 𝐺 ↾ { 𝑋 } ) ) ) |
13 |
6 12
|
mpbid |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐹 ↾ ran ( 𝐺 ↾ { 𝑋 } ) ) Fn ran ( 𝐺 ↾ { 𝑋 } ) ) |
14 |
|
fnfun |
⊢ ( 𝐺 Fn 𝐴 → Fun 𝐺 ) |
15 |
|
funres |
⊢ ( Fun 𝐺 → Fun ( 𝐺 ↾ { 𝑋 } ) ) |
16 |
15
|
funfnd |
⊢ ( Fun 𝐺 → ( 𝐺 ↾ { 𝑋 } ) Fn dom ( 𝐺 ↾ { 𝑋 } ) ) |
17 |
14 16
|
syl |
⊢ ( 𝐺 Fn 𝐴 → ( 𝐺 ↾ { 𝑋 } ) Fn dom ( 𝐺 ↾ { 𝑋 } ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐺 ↾ { 𝑋 } ) Fn dom ( 𝐺 ↾ { 𝑋 } ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐺 ↾ { 𝑋 } ) Fn dom ( 𝐺 ↾ { 𝑋 } ) ) |
20 |
|
fnresfnco |
⊢ ( ( ( 𝐹 ↾ ran ( 𝐺 ↾ { 𝑋 } ) ) Fn ran ( 𝐺 ↾ { 𝑋 } ) ∧ ( 𝐺 ↾ { 𝑋 } ) Fn dom ( 𝐺 ↾ { 𝑋 } ) ) → ( 𝐹 ∘ ( 𝐺 ↾ { 𝑋 } ) ) Fn dom ( 𝐺 ↾ { 𝑋 } ) ) |
21 |
13 19 20
|
syl2anc |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐹 ∘ ( 𝐺 ↾ { 𝑋 } ) ) Fn dom ( 𝐺 ↾ { 𝑋 } ) ) |
22 |
|
fnfun |
⊢ ( ( 𝐹 ∘ ( 𝐺 ↾ { 𝑋 } ) ) Fn dom ( 𝐺 ↾ { 𝑋 } ) → Fun ( 𝐹 ∘ ( 𝐺 ↾ { 𝑋 } ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → Fun ( 𝐹 ∘ ( 𝐺 ↾ { 𝑋 } ) ) ) |
24 |
|
resco |
⊢ ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) = ( 𝐹 ∘ ( 𝐺 ↾ { 𝑋 } ) ) |
25 |
24
|
funeqi |
⊢ ( Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ↔ Fun ( 𝐹 ∘ ( 𝐺 ↾ { 𝑋 } ) ) ) |
26 |
23 25
|
sylibr |
⊢ ( ( ( ( 𝐺 ‘ 𝑋 ) ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ( 𝐺 ‘ 𝑋 ) } ) ) ∧ ( 𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → Fun ( ( 𝐹 ∘ 𝐺 ) ↾ { 𝑋 } ) ) |