| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvco2 |
|- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| 2 |
1
|
adantl |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| 3 |
|
simpll |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( G ` X ) e. dom F ) |
| 4 |
|
df-fn |
|- ( G Fn A <-> ( Fun G /\ dom G = A ) ) |
| 5 |
|
simpll |
|- ( ( ( Fun G /\ dom G = A ) /\ X e. A ) -> Fun G ) |
| 6 |
|
eleq2 |
|- ( A = dom G -> ( X e. A <-> X e. dom G ) ) |
| 7 |
6
|
eqcoms |
|- ( dom G = A -> ( X e. A <-> X e. dom G ) ) |
| 8 |
7
|
biimpd |
|- ( dom G = A -> ( X e. A -> X e. dom G ) ) |
| 9 |
8
|
adantl |
|- ( ( Fun G /\ dom G = A ) -> ( X e. A -> X e. dom G ) ) |
| 10 |
9
|
imp |
|- ( ( ( Fun G /\ dom G = A ) /\ X e. A ) -> X e. dom G ) |
| 11 |
5 10
|
jca |
|- ( ( ( Fun G /\ dom G = A ) /\ X e. A ) -> ( Fun G /\ X e. dom G ) ) |
| 12 |
4 11
|
sylanb |
|- ( ( G Fn A /\ X e. A ) -> ( Fun G /\ X e. dom G ) ) |
| 13 |
12
|
adantl |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( Fun G /\ X e. dom G ) ) |
| 14 |
|
dmfco |
|- ( ( Fun G /\ X e. dom G ) -> ( X e. dom ( F o. G ) <-> ( G ` X ) e. dom F ) ) |
| 15 |
13 14
|
syl |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( X e. dom ( F o. G ) <-> ( G ` X ) e. dom F ) ) |
| 16 |
3 15
|
mpbird |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> X e. dom ( F o. G ) ) |
| 17 |
|
funcoressn |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> Fun ( ( F o. G ) |` { X } ) ) |
| 18 |
|
df-dfat |
|- ( ( F o. G ) defAt X <-> ( X e. dom ( F o. G ) /\ Fun ( ( F o. G ) |` { X } ) ) ) |
| 19 |
|
afvfundmfveq |
|- ( ( F o. G ) defAt X -> ( ( F o. G ) ''' X ) = ( ( F o. G ) ` X ) ) |
| 20 |
18 19
|
sylbir |
|- ( ( X e. dom ( F o. G ) /\ Fun ( ( F o. G ) |` { X } ) ) -> ( ( F o. G ) ''' X ) = ( ( F o. G ) ` X ) ) |
| 21 |
16 17 20
|
syl2anc |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( ( F o. G ) ''' X ) = ( ( F o. G ) ` X ) ) |
| 22 |
|
df-dfat |
|- ( F defAt ( G ` X ) <-> ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) ) |
| 23 |
|
afvfundmfveq |
|- ( F defAt ( G ` X ) -> ( F ''' ( G ` X ) ) = ( F ` ( G ` X ) ) ) |
| 24 |
22 23
|
sylbir |
|- ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) -> ( F ''' ( G ` X ) ) = ( F ` ( G ` X ) ) ) |
| 25 |
24
|
adantr |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( F ''' ( G ` X ) ) = ( F ` ( G ` X ) ) ) |
| 26 |
2 21 25
|
3eqtr4d |
|- ( ( ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( ( F o. G ) ''' X ) = ( F ''' ( G ` X ) ) ) |
| 27 |
|
ianor |
|- ( -. ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) <-> ( -. ( G ` X ) e. dom F \/ -. Fun ( F |` { ( G ` X ) } ) ) ) |
| 28 |
14
|
funfni |
|- ( ( G Fn A /\ X e. A ) -> ( X e. dom ( F o. G ) <-> ( G ` X ) e. dom F ) ) |
| 29 |
28
|
bicomd |
|- ( ( G Fn A /\ X e. A ) -> ( ( G ` X ) e. dom F <-> X e. dom ( F o. G ) ) ) |
| 30 |
29
|
notbid |
|- ( ( G Fn A /\ X e. A ) -> ( -. ( G ` X ) e. dom F <-> -. X e. dom ( F o. G ) ) ) |
| 31 |
30
|
biimpd |
|- ( ( G Fn A /\ X e. A ) -> ( -. ( G ` X ) e. dom F -> -. X e. dom ( F o. G ) ) ) |
| 32 |
|
ndmafv |
|- ( -. X e. dom ( F o. G ) -> ( ( F o. G ) ''' X ) = _V ) |
| 33 |
31 32
|
syl6com |
|- ( -. ( G ` X ) e. dom F -> ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ''' X ) = _V ) ) |
| 34 |
|
funressnfv |
|- ( ( ( X e. dom ( F o. G ) /\ Fun ( ( F o. G ) |` { X } ) ) /\ ( G Fn A /\ X e. A ) ) -> Fun ( F |` { ( G ` X ) } ) ) |
| 35 |
34
|
ex |
|- ( ( X e. dom ( F o. G ) /\ Fun ( ( F o. G ) |` { X } ) ) -> ( ( G Fn A /\ X e. A ) -> Fun ( F |` { ( G ` X ) } ) ) ) |
| 36 |
|
afvnfundmuv |
|- ( -. ( F o. G ) defAt X -> ( ( F o. G ) ''' X ) = _V ) |
| 37 |
18 36
|
sylnbir |
|- ( -. ( X e. dom ( F o. G ) /\ Fun ( ( F o. G ) |` { X } ) ) -> ( ( F o. G ) ''' X ) = _V ) |
| 38 |
35 37
|
nsyl4 |
|- ( -. ( ( F o. G ) ''' X ) = _V -> ( ( G Fn A /\ X e. A ) -> Fun ( F |` { ( G ` X ) } ) ) ) |
| 39 |
38
|
com12 |
|- ( ( G Fn A /\ X e. A ) -> ( -. ( ( F o. G ) ''' X ) = _V -> Fun ( F |` { ( G ` X ) } ) ) ) |
| 40 |
39
|
con1d |
|- ( ( G Fn A /\ X e. A ) -> ( -. Fun ( F |` { ( G ` X ) } ) -> ( ( F o. G ) ''' X ) = _V ) ) |
| 41 |
40
|
com12 |
|- ( -. Fun ( F |` { ( G ` X ) } ) -> ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ''' X ) = _V ) ) |
| 42 |
33 41
|
jaoi |
|- ( ( -. ( G ` X ) e. dom F \/ -. Fun ( F |` { ( G ` X ) } ) ) -> ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ''' X ) = _V ) ) |
| 43 |
27 42
|
sylbi |
|- ( -. ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) -> ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ''' X ) = _V ) ) |
| 44 |
43
|
imp |
|- ( ( -. ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( ( F o. G ) ''' X ) = _V ) |
| 45 |
|
afvnfundmuv |
|- ( -. F defAt ( G ` X ) -> ( F ''' ( G ` X ) ) = _V ) |
| 46 |
22 45
|
sylnbir |
|- ( -. ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) -> ( F ''' ( G ` X ) ) = _V ) |
| 47 |
46
|
eqcomd |
|- ( -. ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) -> _V = ( F ''' ( G ` X ) ) ) |
| 48 |
47
|
adantr |
|- ( ( -. ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> _V = ( F ''' ( G ` X ) ) ) |
| 49 |
44 48
|
eqtrd |
|- ( ( -. ( ( G ` X ) e. dom F /\ Fun ( F |` { ( G ` X ) } ) ) /\ ( G Fn A /\ X e. A ) ) -> ( ( F o. G ) ''' X ) = ( F ''' ( G ` X ) ) ) |
| 50 |
26 49
|
pm2.61ian |
|- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ''' X ) = ( F ''' ( G ` X ) ) ) |
| 51 |
|
eqidd |
|- ( ( G Fn A /\ X e. A ) -> F = F ) |
| 52 |
4 9
|
sylbi |
|- ( G Fn A -> ( X e. A -> X e. dom G ) ) |
| 53 |
52
|
imp |
|- ( ( G Fn A /\ X e. A ) -> X e. dom G ) |
| 54 |
|
fnfun |
|- ( G Fn A -> Fun G ) |
| 55 |
54
|
funresd |
|- ( G Fn A -> Fun ( G |` { X } ) ) |
| 56 |
55
|
adantr |
|- ( ( G Fn A /\ X e. A ) -> Fun ( G |` { X } ) ) |
| 57 |
|
df-dfat |
|- ( G defAt X <-> ( X e. dom G /\ Fun ( G |` { X } ) ) ) |
| 58 |
|
afvfundmfveq |
|- ( G defAt X -> ( G ''' X ) = ( G ` X ) ) |
| 59 |
57 58
|
sylbir |
|- ( ( X e. dom G /\ Fun ( G |` { X } ) ) -> ( G ''' X ) = ( G ` X ) ) |
| 60 |
53 56 59
|
syl2anc |
|- ( ( G Fn A /\ X e. A ) -> ( G ''' X ) = ( G ` X ) ) |
| 61 |
60
|
eqcomd |
|- ( ( G Fn A /\ X e. A ) -> ( G ` X ) = ( G ''' X ) ) |
| 62 |
51 61
|
afveq12d |
|- ( ( G Fn A /\ X e. A ) -> ( F ''' ( G ` X ) ) = ( F ''' ( G ''' X ) ) ) |
| 63 |
50 62
|
eqtrd |
|- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ''' X ) = ( F ''' ( G ''' X ) ) ) |