Metamath Proof Explorer


Theorem afvco2

Description: Value of a function composition, analogous to fvco2 . (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion afvco2 G Fn A X A F G ''' X = F ''' G ''' X

Proof

Step Hyp Ref Expression
1 fvco2 G Fn A X A F G X = F G X
2 1 adantl G X dom F Fun F G X G Fn A X A F G X = F G X
3 simpll G X dom F Fun F G X G Fn A X A G X dom F
4 df-fn G Fn A Fun G dom G = A
5 simpll Fun G dom G = A X A Fun G
6 eleq2 A = dom G X A X dom G
7 6 eqcoms dom G = A X A X dom G
8 7 biimpd dom G = A X A X dom G
9 8 adantl Fun G dom G = A X A X dom G
10 9 imp Fun G dom G = A X A X dom G
11 5 10 jca Fun G dom G = A X A Fun G X dom G
12 4 11 sylanb G Fn A X A Fun G X dom G
13 12 adantl G X dom F Fun F G X G Fn A X A Fun G X dom G
14 dmfco Fun G X dom G X dom F G G X dom F
15 13 14 syl G X dom F Fun F G X G Fn A X A X dom F G G X dom F
16 3 15 mpbird G X dom F Fun F G X G Fn A X A X dom F G
17 funcoressn G X dom F Fun F G X G Fn A X A Fun F G X
18 df-dfat F G defAt X X dom F G Fun F G X
19 afvfundmfveq F G defAt X F G ''' X = F G X
20 18 19 sylbir X dom F G Fun F G X F G ''' X = F G X
21 16 17 20 syl2anc G X dom F Fun F G X G Fn A X A F G ''' X = F G X
22 df-dfat F defAt G X G X dom F Fun F G X
23 afvfundmfveq F defAt G X F ''' G X = F G X
24 22 23 sylbir G X dom F Fun F G X F ''' G X = F G X
25 24 adantr G X dom F Fun F G X G Fn A X A F ''' G X = F G X
26 2 21 25 3eqtr4d G X dom F Fun F G X G Fn A X A F G ''' X = F ''' G X
27 ianor ¬ G X dom F Fun F G X ¬ G X dom F ¬ Fun F G X
28 14 funfni G Fn A X A X dom F G G X dom F
29 28 bicomd G Fn A X A G X dom F X dom F G
30 29 notbid G Fn A X A ¬ G X dom F ¬ X dom F G
31 30 biimpd G Fn A X A ¬ G X dom F ¬ X dom F G
32 ndmafv ¬ X dom F G F G ''' X = V
33 31 32 syl6com ¬ G X dom F G Fn A X A F G ''' X = V
34 funressnfv X dom F G Fun F G X G Fn A X A Fun F G X
35 34 ex X dom F G Fun F G X G Fn A X A Fun F G X
36 afvnfundmuv ¬ F G defAt X F G ''' X = V
37 18 36 sylnbir ¬ X dom F G Fun F G X F G ''' X = V
38 35 37 nsyl4 ¬ F G ''' X = V G Fn A X A Fun F G X
39 38 com12 G Fn A X A ¬ F G ''' X = V Fun F G X
40 39 con1d G Fn A X A ¬ Fun F G X F G ''' X = V
41 40 com12 ¬ Fun F G X G Fn A X A F G ''' X = V
42 33 41 jaoi ¬ G X dom F ¬ Fun F G X G Fn A X A F G ''' X = V
43 27 42 sylbi ¬ G X dom F Fun F G X G Fn A X A F G ''' X = V
44 43 imp ¬ G X dom F Fun F G X G Fn A X A F G ''' X = V
45 afvnfundmuv ¬ F defAt G X F ''' G X = V
46 22 45 sylnbir ¬ G X dom F Fun F G X F ''' G X = V
47 46 eqcomd ¬ G X dom F Fun F G X V = F ''' G X
48 47 adantr ¬ G X dom F Fun F G X G Fn A X A V = F ''' G X
49 44 48 eqtrd ¬ G X dom F Fun F G X G Fn A X A F G ''' X = F ''' G X
50 26 49 pm2.61ian G Fn A X A F G ''' X = F ''' G X
51 eqidd G Fn A X A F = F
52 4 9 sylbi G Fn A X A X dom G
53 52 imp G Fn A X A X dom G
54 fnfun G Fn A Fun G
55 54 funresd G Fn A Fun G X
56 55 adantr G Fn A X A Fun G X
57 df-dfat G defAt X X dom G Fun G X
58 afvfundmfveq G defAt X G ''' X = G X
59 57 58 sylbir X dom G Fun G X G ''' X = G X
60 53 56 59 syl2anc G Fn A X A G ''' X = G X
61 60 eqcomd G Fn A X A G X = G ''' X
62 51 61 afveq12d G Fn A X A F ''' G X = F ''' G ''' X
63 50 62 eqtrd G Fn A X A F G ''' X = F ''' G ''' X