Metamath Proof Explorer


Theorem rlimdmafv

Description: Two ways to express that a function has a limit, analogous to rlimdm . (Contributed by Alexander van der Vekens, 27-Nov-2017)

Ref Expression
Hypotheses rlimdmafv.1 φF:A
rlimdmafv.2 φsupA*<=+∞
Assertion rlimdmafv φFdomF'''F

Proof

Step Hyp Ref Expression
1 rlimdmafv.1 φF:A
2 rlimdmafv.2 φsupA*<=+∞
3 eldmg FdomFdomxFx
4 3 ibi FdomxFx
5 simpr φFxFx
6 rlimrel Rel
7 6 brrelex1i FxFV
8 7 adantl φFxFV
9 vex xV
10 9 a1i φFxxV
11 breldmg FVxVFxFdom
12 8 10 5 11 syl3anc φFxFdom
13 breq2 y=xFyFx
14 13 biimprd y=xFxFy
15 14 spimevw FxyFy
16 15 adantl φFxyFy
17 1 adantr φFxF:A
18 17 adantr φFxFyFzF:A
19 2 adantr φFxsupA*<=+∞
20 19 adantr φFxFyFzsupA*<=+∞
21 simprl φFxFyFzFy
22 simprr φFxFyFzFz
23 18 20 21 22 rlimuni φFxFyFzy=z
24 23 ex φFxFyFzy=z
25 24 alrimivv φFxyzFyFzy=z
26 breq2 y=zFyFz
27 26 eu4 ∃!yFyyFyyzFyFzy=z
28 16 25 27 sylanbrc φFx∃!yFy
29 dfdfat2 defAtFFdom∃!yFy
30 12 28 29 sylanbrc φFxdefAtF
31 afvfundmfveq defAtF'''F=F
32 30 31 syl φFx'''F=F
33 df-fv F=ιw|Fw
34 1 adantr φFxFwF:A
35 2 adantr φFxFwsupA*<=+∞
36 simprr φFxFwFw
37 simprl φFxFwFx
38 34 35 36 37 rlimuni φFxFww=x
39 38 expr φFxFww=x
40 breq2 w=xFwFx
41 5 40 syl5ibrcom φFxw=xFw
42 39 41 impbid φFxFww=x
43 42 adantr φFxxVFww=x
44 43 iota5 φFxxVιw|Fw=x
45 44 elvd φFxιw|Fw=x
46 33 45 eqtrid φFxF=x
47 32 46 eqtrd φFx'''F=x
48 5 47 breqtrrd φFxF'''F
49 48 ex φFxF'''F
50 49 exlimdv φxFxF'''F
51 4 50 syl5 φFdomF'''F
52 6 releldmi F'''FFdom
53 51 52 impbid1 φFdomF'''F