Description: Two ways to express that a function has a limit, analogous to rlimdm . (Contributed by Alexander van der Vekens, 27-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimdmafv.1 | |
|
rlimdmafv.2 | |
||
Assertion | rlimdmafv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimdmafv.1 | |
|
2 | rlimdmafv.2 | |
|
3 | eldmg | |
|
4 | 3 | ibi | |
5 | simpr | |
|
6 | rlimrel | |
|
7 | 6 | brrelex1i | |
8 | 7 | adantl | |
9 | vex | |
|
10 | 9 | a1i | |
11 | breldmg | |
|
12 | 8 10 5 11 | syl3anc | |
13 | breq2 | |
|
14 | 13 | biimprd | |
15 | 14 | spimevw | |
16 | 15 | adantl | |
17 | 1 | adantr | |
18 | 17 | adantr | |
19 | 2 | adantr | |
20 | 19 | adantr | |
21 | simprl | |
|
22 | simprr | |
|
23 | 18 20 21 22 | rlimuni | |
24 | 23 | ex | |
25 | 24 | alrimivv | |
26 | breq2 | |
|
27 | 26 | eu4 | |
28 | 16 25 27 | sylanbrc | |
29 | dfdfat2 | |
|
30 | 12 28 29 | sylanbrc | |
31 | afvfundmfveq | |
|
32 | 30 31 | syl | |
33 | df-fv | |
|
34 | 1 | adantr | |
35 | 2 | adantr | |
36 | simprr | |
|
37 | simprl | |
|
38 | 34 35 36 37 | rlimuni | |
39 | 38 | expr | |
40 | breq2 | |
|
41 | 5 40 | syl5ibrcom | |
42 | 39 41 | impbid | |
43 | 42 | adantr | |
44 | 43 | iota5 | |
45 | 44 | elvd | |
46 | 33 45 | eqtrid | |
47 | 32 46 | eqtrd | |
48 | 5 47 | breqtrrd | |
49 | 48 | ex | |
50 | 49 | exlimdv | |
51 | 4 50 | syl5 | |
52 | 6 | releldmi | |
53 | 51 52 | impbid1 | |