| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimdmafv.1 |  | 
						
							| 2 |  | rlimdmafv.2 |  | 
						
							| 3 |  | eldmg |  | 
						
							| 4 | 3 | ibi |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 |  | rlimrel |  | 
						
							| 7 | 6 | brrelex1i |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | vex |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | breldmg |  | 
						
							| 12 | 8 10 5 11 | syl3anc |  | 
						
							| 13 |  | breq2 |  | 
						
							| 14 | 13 | biimprd |  | 
						
							| 15 | 14 | spimevw |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 1 | adantr |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 2 | adantr |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | simprl |  | 
						
							| 22 |  | simprr |  | 
						
							| 23 | 18 20 21 22 | rlimuni |  | 
						
							| 24 | 23 | ex |  | 
						
							| 25 | 24 | alrimivv |  | 
						
							| 26 |  | breq2 |  | 
						
							| 27 | 26 | eu4 |  | 
						
							| 28 | 16 25 27 | sylanbrc |  | 
						
							| 29 |  | dfdfat2 |  | 
						
							| 30 | 12 28 29 | sylanbrc |  | 
						
							| 31 |  | afvfundmfveq |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 |  | df-fv |  | 
						
							| 34 | 1 | adantr |  | 
						
							| 35 | 2 | adantr |  | 
						
							| 36 |  | simprr |  | 
						
							| 37 |  | simprl |  | 
						
							| 38 | 34 35 36 37 | rlimuni |  | 
						
							| 39 | 38 | expr |  | 
						
							| 40 |  | breq2 |  | 
						
							| 41 | 5 40 | syl5ibrcom |  | 
						
							| 42 | 39 41 | impbid |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 43 | iota5 |  | 
						
							| 45 | 44 | elvd |  | 
						
							| 46 | 33 45 | eqtrid |  | 
						
							| 47 | 32 46 | eqtrd |  | 
						
							| 48 | 5 47 | breqtrrd |  | 
						
							| 49 | 48 | ex |  | 
						
							| 50 | 49 | exlimdv |  | 
						
							| 51 | 4 50 | syl5 |  | 
						
							| 52 | 6 | releldmi |  | 
						
							| 53 | 51 52 | impbid1 |  |