Step |
Hyp |
Ref |
Expression |
1 |
|
rlimdmafv.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
rlimdmafv.2 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
3 |
|
eldmg |
⊢ ( 𝐹 ∈ dom ⇝𝑟 → ( 𝐹 ∈ dom ⇝𝑟 ↔ ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) ) |
4 |
3
|
ibi |
⊢ ( 𝐹 ∈ dom ⇝𝑟 → ∃ 𝑥 𝐹 ⇝𝑟 𝑥 ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 𝑥 ) |
6 |
|
rlimrel |
⊢ Rel ⇝𝑟 |
7 |
6
|
brrelex1i |
⊢ ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ∈ V ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ∈ V ) |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝑥 ∈ V ) |
11 |
|
breldmg |
⊢ ( ( 𝐹 ∈ V ∧ 𝑥 ∈ V ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ∈ dom ⇝𝑟 ) |
12 |
8 10 5 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ∈ dom ⇝𝑟 ) |
13 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥 ) ) |
14 |
13
|
biimprd |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 𝑦 ) ) |
15 |
14
|
spimevw |
⊢ ( 𝐹 ⇝𝑟 𝑥 → ∃ 𝑦 𝐹 ⇝𝑟 𝑦 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ∃ 𝑦 𝐹 ⇝𝑟 𝑦 ) |
17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
21 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝐹 ⇝𝑟 𝑦 ) |
22 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝐹 ⇝𝑟 𝑧 ) |
23 |
18 20 21 22
|
rlimuni |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) ) → 𝑦 = 𝑧 ) |
24 |
23
|
ex |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) → 𝑦 = 𝑧 ) ) |
25 |
24
|
alrimivv |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ∀ 𝑦 ∀ 𝑧 ( ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) → 𝑦 = 𝑧 ) ) |
26 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑧 ) ) |
27 |
26
|
eu4 |
⊢ ( ∃! 𝑦 𝐹 ⇝𝑟 𝑦 ↔ ( ∃ 𝑦 𝐹 ⇝𝑟 𝑦 ∧ ∀ 𝑦 ∀ 𝑧 ( ( 𝐹 ⇝𝑟 𝑦 ∧ 𝐹 ⇝𝑟 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
28 |
16 25 27
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ∃! 𝑦 𝐹 ⇝𝑟 𝑦 ) |
29 |
|
dfdfat2 |
⊢ ( ⇝𝑟 defAt 𝐹 ↔ ( 𝐹 ∈ dom ⇝𝑟 ∧ ∃! 𝑦 𝐹 ⇝𝑟 𝑦 ) ) |
30 |
12 28 29
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ⇝𝑟 defAt 𝐹 ) |
31 |
|
afvfundmfveq |
⊢ ( ⇝𝑟 defAt 𝐹 → ( ⇝𝑟 ''' 𝐹 ) = ( ⇝𝑟 ‘ 𝐹 ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ⇝𝑟 ''' 𝐹 ) = ( ⇝𝑟 ‘ 𝐹 ) ) |
33 |
|
df-fv |
⊢ ( ⇝𝑟 ‘ 𝐹 ) = ( ℩ 𝑤 𝐹 ⇝𝑟 𝑤 ) |
34 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝐹 ⇝𝑟 𝑤 ) |
37 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝐹 ⇝𝑟 𝑥 ) |
38 |
34 35 36 37
|
rlimuni |
⊢ ( ( 𝜑 ∧ ( 𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑤 ) ) → 𝑤 = 𝑥 ) |
39 |
38
|
expr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑤 → 𝑤 = 𝑥 ) ) |
40 |
|
breq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ⇝𝑟 𝑤 ↔ 𝐹 ⇝𝑟 𝑥 ) ) |
41 |
5 40
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝑤 = 𝑥 → 𝐹 ⇝𝑟 𝑤 ) ) |
42 |
39 41
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( 𝐹 ⇝𝑟 𝑤 ↔ 𝑤 = 𝑥 ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( 𝐹 ⇝𝑟 𝑤 ↔ 𝑤 = 𝑥 ) ) |
44 |
43
|
iota5 |
⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) ∧ 𝑥 ∈ V ) → ( ℩ 𝑤 𝐹 ⇝𝑟 𝑤 ) = 𝑥 ) |
45 |
44
|
elvd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ℩ 𝑤 𝐹 ⇝𝑟 𝑤 ) = 𝑥 ) |
46 |
33 45
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ⇝𝑟 ‘ 𝐹 ) = 𝑥 ) |
47 |
32 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → ( ⇝𝑟 ''' 𝐹 ) = 𝑥 ) |
48 |
5 47
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝑥 ) → 𝐹 ⇝𝑟 ( ⇝𝑟 ''' 𝐹 ) ) |
49 |
48
|
ex |
⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ''' 𝐹 ) ) ) |
50 |
49
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ''' 𝐹 ) ) ) |
51 |
4 50
|
syl5 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ''' 𝐹 ) ) ) |
52 |
6
|
releldmi |
⊢ ( 𝐹 ⇝𝑟 ( ⇝𝑟 ''' 𝐹 ) → 𝐹 ∈ dom ⇝𝑟 ) |
53 |
51 52
|
impbid1 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ''' 𝐹 ) ) ) |