| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimdmafv.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 |  | rlimdmafv.2 | ⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 3 |  | eldmg | ⊢ ( 𝐹  ∈  dom   ⇝𝑟   →  ( 𝐹  ∈  dom   ⇝𝑟   ↔  ∃ 𝑥 𝐹  ⇝𝑟  𝑥 ) ) | 
						
							| 4 | 3 | ibi | ⊢ ( 𝐹  ∈  dom   ⇝𝑟   →  ∃ 𝑥 𝐹  ⇝𝑟  𝑥 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  𝐹  ⇝𝑟  𝑥 ) | 
						
							| 6 |  | rlimrel | ⊢ Rel   ⇝𝑟 | 
						
							| 7 | 6 | brrelex1i | ⊢ ( 𝐹  ⇝𝑟  𝑥  →  𝐹  ∈  V ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  𝐹  ∈  V ) | 
						
							| 9 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  𝑥  ∈  V ) | 
						
							| 11 |  | breldmg | ⊢ ( ( 𝐹  ∈  V  ∧  𝑥  ∈  V  ∧  𝐹  ⇝𝑟  𝑥 )  →  𝐹  ∈  dom   ⇝𝑟  ) | 
						
							| 12 | 8 10 5 11 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  𝐹  ∈  dom   ⇝𝑟  ) | 
						
							| 13 |  | breq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹  ⇝𝑟  𝑦  ↔  𝐹  ⇝𝑟  𝑥 ) ) | 
						
							| 14 | 13 | biimprd | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹  ⇝𝑟  𝑥  →  𝐹  ⇝𝑟  𝑦 ) ) | 
						
							| 15 | 14 | spimevw | ⊢ ( 𝐹  ⇝𝑟  𝑥  →  ∃ 𝑦 𝐹  ⇝𝑟  𝑦 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ∃ 𝑦 𝐹  ⇝𝑟  𝑦 ) | 
						
							| 17 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  ∧  ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 ) )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 19 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  ∧  ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 ) )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 21 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  ∧  ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 ) )  →  𝐹  ⇝𝑟  𝑦 ) | 
						
							| 22 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  ∧  ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 ) )  →  𝐹  ⇝𝑟  𝑧 ) | 
						
							| 23 | 18 20 21 22 | rlimuni | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  ∧  ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 ) )  →  𝑦  =  𝑧 ) | 
						
							| 24 | 23 | ex | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ( ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 25 | 24 | alrimivv | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ∀ 𝑦 ∀ 𝑧 ( ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 26 |  | breq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹  ⇝𝑟  𝑦  ↔  𝐹  ⇝𝑟  𝑧 ) ) | 
						
							| 27 | 26 | eu4 | ⊢ ( ∃! 𝑦 𝐹  ⇝𝑟  𝑦  ↔  ( ∃ 𝑦 𝐹  ⇝𝑟  𝑦  ∧  ∀ 𝑦 ∀ 𝑧 ( ( 𝐹  ⇝𝑟  𝑦  ∧  𝐹  ⇝𝑟  𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 28 | 16 25 27 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ∃! 𝑦 𝐹  ⇝𝑟  𝑦 ) | 
						
							| 29 |  | dfdfat2 | ⊢ (  ⇝𝑟   defAt  𝐹  ↔  ( 𝐹  ∈  dom   ⇝𝑟   ∧  ∃! 𝑦 𝐹  ⇝𝑟  𝑦 ) ) | 
						
							| 30 | 12 28 29 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →   ⇝𝑟   defAt  𝐹 ) | 
						
							| 31 |  | afvfundmfveq | ⊢ (  ⇝𝑟   defAt  𝐹  →  (  ⇝𝑟  ''' 𝐹 )  =  (  ⇝𝑟  ‘ 𝐹 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  (  ⇝𝑟  ''' 𝐹 )  =  (  ⇝𝑟  ‘ 𝐹 ) ) | 
						
							| 33 |  | df-fv | ⊢ (  ⇝𝑟  ‘ 𝐹 )  =  ( ℩ 𝑤 𝐹  ⇝𝑟  𝑤 ) | 
						
							| 34 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ⇝𝑟  𝑥  ∧  𝐹  ⇝𝑟  𝑤 ) )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 35 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ⇝𝑟  𝑥  ∧  𝐹  ⇝𝑟  𝑤 ) )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 36 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ⇝𝑟  𝑥  ∧  𝐹  ⇝𝑟  𝑤 ) )  →  𝐹  ⇝𝑟  𝑤 ) | 
						
							| 37 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐹  ⇝𝑟  𝑥  ∧  𝐹  ⇝𝑟  𝑤 ) )  →  𝐹  ⇝𝑟  𝑥 ) | 
						
							| 38 | 34 35 36 37 | rlimuni | ⊢ ( ( 𝜑  ∧  ( 𝐹  ⇝𝑟  𝑥  ∧  𝐹  ⇝𝑟  𝑤 ) )  →  𝑤  =  𝑥 ) | 
						
							| 39 | 38 | expr | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ( 𝐹  ⇝𝑟  𝑤  →  𝑤  =  𝑥 ) ) | 
						
							| 40 |  | breq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹  ⇝𝑟  𝑤  ↔  𝐹  ⇝𝑟  𝑥 ) ) | 
						
							| 41 | 5 40 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ( 𝑤  =  𝑥  →  𝐹  ⇝𝑟  𝑤 ) ) | 
						
							| 42 | 39 41 | impbid | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ( 𝐹  ⇝𝑟  𝑤  ↔  𝑤  =  𝑥 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  ∧  𝑥  ∈  V )  →  ( 𝐹  ⇝𝑟  𝑤  ↔  𝑤  =  𝑥 ) ) | 
						
							| 44 | 43 | iota5 | ⊢ ( ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  ∧  𝑥  ∈  V )  →  ( ℩ 𝑤 𝐹  ⇝𝑟  𝑤 )  =  𝑥 ) | 
						
							| 45 | 44 | elvd | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  ( ℩ 𝑤 𝐹  ⇝𝑟  𝑤 )  =  𝑥 ) | 
						
							| 46 | 33 45 | eqtrid | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  (  ⇝𝑟  ‘ 𝐹 )  =  𝑥 ) | 
						
							| 47 | 32 46 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  (  ⇝𝑟  ''' 𝐹 )  =  𝑥 ) | 
						
							| 48 | 5 47 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐹  ⇝𝑟  𝑥 )  →  𝐹  ⇝𝑟  (  ⇝𝑟  ''' 𝐹 ) ) | 
						
							| 49 | 48 | ex | ⊢ ( 𝜑  →  ( 𝐹  ⇝𝑟  𝑥  →  𝐹  ⇝𝑟  (  ⇝𝑟  ''' 𝐹 ) ) ) | 
						
							| 50 | 49 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥 𝐹  ⇝𝑟  𝑥  →  𝐹  ⇝𝑟  (  ⇝𝑟  ''' 𝐹 ) ) ) | 
						
							| 51 | 4 50 | syl5 | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom   ⇝𝑟   →  𝐹  ⇝𝑟  (  ⇝𝑟  ''' 𝐹 ) ) ) | 
						
							| 52 | 6 | releldmi | ⊢ ( 𝐹  ⇝𝑟  (  ⇝𝑟  ''' 𝐹 )  →  𝐹  ∈  dom   ⇝𝑟  ) | 
						
							| 53 | 51 52 | impbid1 | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom   ⇝𝑟   ↔  𝐹  ⇝𝑟  (  ⇝𝑟  ''' 𝐹 ) ) ) |