| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmfco |
|- ( ( Fun G /\ A e. dom G ) -> ( A e. dom ( F o. G ) <-> ( G ` A ) e. dom F ) ) |
| 2 |
|
funres |
|- ( Fun G -> Fun ( G |` { A } ) ) |
| 3 |
2
|
anim2i |
|- ( ( A e. dom G /\ Fun G ) -> ( A e. dom G /\ Fun ( G |` { A } ) ) ) |
| 4 |
3
|
ancoms |
|- ( ( Fun G /\ A e. dom G ) -> ( A e. dom G /\ Fun ( G |` { A } ) ) ) |
| 5 |
|
df-dfat |
|- ( G defAt A <-> ( A e. dom G /\ Fun ( G |` { A } ) ) ) |
| 6 |
|
afvfundmfveq |
|- ( G defAt A -> ( G ''' A ) = ( G ` A ) ) |
| 7 |
5 6
|
sylbir |
|- ( ( A e. dom G /\ Fun ( G |` { A } ) ) -> ( G ''' A ) = ( G ` A ) ) |
| 8 |
4 7
|
syl |
|- ( ( Fun G /\ A e. dom G ) -> ( G ''' A ) = ( G ` A ) ) |
| 9 |
8
|
eqcomd |
|- ( ( Fun G /\ A e. dom G ) -> ( G ` A ) = ( G ''' A ) ) |
| 10 |
9
|
eleq1d |
|- ( ( Fun G /\ A e. dom G ) -> ( ( G ` A ) e. dom F <-> ( G ''' A ) e. dom F ) ) |
| 11 |
1 10
|
bitrd |
|- ( ( Fun G /\ A e. dom G ) -> ( A e. dom ( F o. G ) <-> ( G ''' A ) e. dom F ) ) |