Metamath Proof Explorer


Theorem dmfcoafv

Description: Domains of a function composition, analogous to dmfco . (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion dmfcoafv Fun G A dom G A dom F G G ''' A dom F

Proof

Step Hyp Ref Expression
1 dmfco Fun G A dom G A dom F G G A dom F
2 funres Fun G Fun G A
3 2 anim2i A dom G Fun G A dom G Fun G A
4 3 ancoms Fun G A dom G A dom G Fun G A
5 df-dfat G defAt A A dom G Fun G A
6 afvfundmfveq G defAt A G ''' A = G A
7 5 6 sylbir A dom G Fun G A G ''' A = G A
8 4 7 syl Fun G A dom G G ''' A = G A
9 8 eqcomd Fun G A dom G G A = G ''' A
10 9 eleq1d Fun G A dom G G A dom F G ''' A dom F
11 1 10 bitrd Fun G A dom G A dom F G G ''' A dom F