| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
drngi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
drngi.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
drngi.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 5 |
|
opeq1 |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → 〈 𝑔 , ℎ 〉 = 〈 ( 1st ‘ 𝑅 ) , ℎ 〉 ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( 〈 𝑔 , ℎ 〉 ∈ RingOps ↔ 〈 ( 1st ‘ 𝑅 ) , ℎ 〉 ∈ RingOps ) ) |
| 7 |
|
id |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → 𝑔 = ( 1st ‘ 𝑅 ) ) |
| 8 |
7 1
|
eqtr4di |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → 𝑔 = 𝐺 ) |
| 9 |
8
|
rneqd |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ran 𝑔 = ran 𝐺 ) |
| 10 |
9 3
|
eqtr4di |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ran 𝑔 = 𝑋 ) |
| 11 |
8
|
fveq2d |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) ) |
| 12 |
11 4
|
eqtr4di |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( GId ‘ 𝑔 ) = 𝑍 ) |
| 13 |
12
|
sneqd |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → { ( GId ‘ 𝑔 ) } = { 𝑍 } ) |
| 14 |
10 13
|
difeq12d |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) = ( 𝑋 ∖ { 𝑍 } ) ) |
| 15 |
14
|
sqxpeqd |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) = ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 16 |
15
|
reseq2d |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) = ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
| 17 |
16
|
eleq1d |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ↔ ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) |
| 18 |
6 17
|
anbi12d |
⊢ ( 𝑔 = ( 1st ‘ 𝑅 ) → ( ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) ↔ ( 〈 ( 1st ‘ 𝑅 ) , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) ) |
| 19 |
|
opeq2 |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → 〈 ( 1st ‘ 𝑅 ) , ℎ 〉 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
| 20 |
19
|
eleq1d |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → ( 〈 ( 1st ‘ 𝑅 ) , ℎ 〉 ∈ RingOps ↔ 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ) ) |
| 21 |
20
|
anbi1d |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → ( ( 〈 ( 1st ‘ 𝑅 ) , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ↔ ( 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) ) |
| 22 |
|
id |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → ℎ = ( 2nd ‘ 𝑅 ) ) |
| 23 |
2 22
|
eqtr4id |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → 𝐻 = ℎ ) |
| 24 |
23
|
reseq1d |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
| 25 |
24
|
eleq1d |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → ( ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ↔ ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) |
| 26 |
25
|
anbi2d |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → ( ( 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ↔ ( 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) ) |
| 27 |
21 26
|
bitr4d |
⊢ ( ℎ = ( 2nd ‘ 𝑅 ) → ( ( 〈 ( 1st ‘ 𝑅 ) , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ↔ ( 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) ) |
| 28 |
18 27
|
elopabi |
⊢ ( 𝑅 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } → ( 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) |
| 29 |
|
df-drngo |
⊢ DivRingOps = { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } |
| 30 |
28 29
|
eleq2s |
⊢ ( 𝑅 ∈ DivRingOps → ( 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) |
| 31 |
29
|
relopabiv |
⊢ Rel DivRingOps |
| 32 |
|
1st2nd |
⊢ ( ( Rel DivRingOps ∧ 𝑅 ∈ DivRingOps ) → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
| 33 |
31 32
|
mpan |
⊢ ( 𝑅 ∈ DivRingOps → 𝑅 = 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑅 ∈ DivRingOps → ( 𝑅 ∈ RingOps ↔ 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ) ) |
| 35 |
34
|
anbi1d |
⊢ ( 𝑅 ∈ DivRingOps → ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ↔ ( 〈 ( 1st ‘ 𝑅 ) , ( 2nd ‘ 𝑅 ) 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) ) |
| 36 |
30 35
|
mpbird |
⊢ ( 𝑅 ∈ DivRingOps → ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) |