Metamath Proof Explorer


Theorem dsmmlmod

Description: The direct sum of a family of modules is a module. See also the remark in Lang p. 128. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmlss.i ( 𝜑𝐼𝑊 )
dsmmlss.s ( 𝜑𝑆 ∈ Ring )
dsmmlss.r ( 𝜑𝑅 : 𝐼 ⟶ LMod )
dsmmlss.k ( ( 𝜑𝑥𝐼 ) → ( Scalar ‘ ( 𝑅𝑥 ) ) = 𝑆 )
dsmmlmod.c 𝐶 = ( 𝑆m 𝑅 )
Assertion dsmmlmod ( 𝜑𝐶 ∈ LMod )

Proof

Step Hyp Ref Expression
1 dsmmlss.i ( 𝜑𝐼𝑊 )
2 dsmmlss.s ( 𝜑𝑆 ∈ Ring )
3 dsmmlss.r ( 𝜑𝑅 : 𝐼 ⟶ LMod )
4 dsmmlss.k ( ( 𝜑𝑥𝐼 ) → ( Scalar ‘ ( 𝑅𝑥 ) ) = 𝑆 )
5 dsmmlmod.c 𝐶 = ( 𝑆m 𝑅 )
6 eqid ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs 𝑅 )
7 6 2 1 3 4 prdslmodd ( 𝜑 → ( 𝑆 Xs 𝑅 ) ∈ LMod )
8 eqid ( LSubSp ‘ ( 𝑆 Xs 𝑅 ) ) = ( LSubSp ‘ ( 𝑆 Xs 𝑅 ) )
9 eqid ( Base ‘ ( 𝑆m 𝑅 ) ) = ( Base ‘ ( 𝑆m 𝑅 ) )
10 1 2 3 4 6 8 9 dsmmlss ( 𝜑 → ( Base ‘ ( 𝑆m 𝑅 ) ) ∈ ( LSubSp ‘ ( 𝑆 Xs 𝑅 ) ) )
11 9 dsmmval2 ( 𝑆m 𝑅 ) = ( ( 𝑆 Xs 𝑅 ) ↾s ( Base ‘ ( 𝑆m 𝑅 ) ) )
12 5 11 eqtri 𝐶 = ( ( 𝑆 Xs 𝑅 ) ↾s ( Base ‘ ( 𝑆m 𝑅 ) ) )
13 12 8 lsslmod ( ( ( 𝑆 Xs 𝑅 ) ∈ LMod ∧ ( Base ‘ ( 𝑆m 𝑅 ) ) ∈ ( LSubSp ‘ ( 𝑆 Xs 𝑅 ) ) ) → 𝐶 ∈ LMod )
14 7 10 13 syl2anc ( 𝜑𝐶 ∈ LMod )