| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdslmodd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdslmodd.s |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 3 |
|
prdslmodd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
prdslmodd.rm |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) |
| 5 |
|
prdslmodd.rs |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
| 8 |
4 3
|
fexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 9 |
1 2 8
|
prdssca |
⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑌 ) ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 12 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) ) |
| 15 |
|
lmodgrp |
⊢ ( 𝑎 ∈ LMod → 𝑎 ∈ Grp ) |
| 16 |
15
|
ssriv |
⊢ LMod ⊆ Grp |
| 17 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ LMod ∧ LMod ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) |
| 18 |
4 16 17
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 19 |
1 3 2 18
|
prdsgrpd |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 21 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 24 |
3
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
| 27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 29 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
| 30 |
1 20 21 22 23 25 26 27 28 29
|
prdsvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 31 |
30
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 32 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 34 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 35 |
5
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
| 36 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
| 37 |
34 36
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 38 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 39 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 40 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 42 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
| 44 |
1 20 38 39 41 42 43
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 45 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
| 46 |
1 20 38 39 41 45 43
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 47 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 48 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 49 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 50 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 51 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 52 |
47 48 49 50 51
|
lmodvsdi |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 53 |
33 37 44 46 52
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 54 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 55 |
1 20 38 39 41 42 45 54 43
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 56 |
55
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 57 |
1 20 21 22 38 39 41 34 42 43
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ) |
| 58 |
1 20 21 22 38 39 41 34 45 43
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 59 |
57 58
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 60 |
53 56 59
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 61 |
60
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 63 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 64 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 65 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 66 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑌 ∈ Grp ) |
| 67 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
| 68 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
| 69 |
20 54
|
grpcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 70 |
66 67 68 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 71 |
1 20 21 22 62 63 64 65 70
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 72 |
30
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
| 73 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 74 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 75 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
| 76 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 77 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
| 78 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
| 79 |
1 20 21 22 73 74 75 76 77 78
|
prdsvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 80 |
79
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 81 |
1 20 62 63 64 72 80 54
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 82 |
61 71 81
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
| 83 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 84 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 85 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 86 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 87 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
| 88 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
| 89 |
1 20 21 22 83 84 85 86 87 88
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 90 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 91 |
1 20 21 22 83 84 85 90 87 88
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 92 |
89 91
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 93 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 94 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
| 95 |
86 94
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 96 |
90 94
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 97 |
1 20 83 84 85 87 88
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 98 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 99 |
47 48 49 50 51 98
|
lmodvsdir |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 100 |
93 95 96 97 99
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 101 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
| 102 |
101
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( +g ‘ 𝑆 ) ) |
| 103 |
102
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) |
| 104 |
103
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 105 |
92 100 104
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 106 |
105
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 107 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
| 108 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
| 109 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 110 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 111 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 112 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 113 |
22 112
|
ringacl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 114 |
107 110 111 113
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 115 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
| 116 |
1 20 21 22 107 108 109 114 115
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 117 |
79
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 118 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
| 119 |
1 20 21 22 107 108 118 111 115 101
|
prdsvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
| 120 |
1 20 107 108 109 117 119 54
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 121 |
106 116 120
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
| 122 |
91
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 123 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 124 |
47 49 50 51 123
|
lmodvsass |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 125 |
93 95 96 97 124
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 126 |
101
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( .r ‘ 𝑆 ) ) |
| 127 |
126
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ) |
| 128 |
127
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
| 129 |
122 125 128
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
| 130 |
129
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 131 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 132 |
22 131
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 133 |
107 110 111 132
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 134 |
1 20 21 22 107 108 109 133 115
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
| 135 |
1 20 21 22 107 108 109 110 119
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
| 136 |
130 134 135
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
| 137 |
5
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 138 |
137
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 139 |
138
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) |
| 140 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
| 141 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 142 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 143 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 144 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 145 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
| 146 |
1 20 141 142 143 144 145
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 147 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 148 |
47 49 50 147
|
lmodvs1 |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
| 149 |
140 146 148
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
| 150 |
139 149
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
| 151 |
150
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
| 152 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ Ring ) |
| 153 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
| 154 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 Fn 𝐼 ) |
| 155 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 156 |
22 155
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 157 |
2 156
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 158 |
157
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 159 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
| 160 |
1 20 21 22 152 153 154 158 159
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑌 ) 𝑎 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) ) |
| 161 |
1 20 152 153 154 159
|
prdsbasfn |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 Fn 𝐼 ) |
| 162 |
|
dffn5 |
⊢ ( 𝑎 Fn 𝐼 ↔ 𝑎 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
| 163 |
161 162
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
| 164 |
151 160 163
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑌 ) 𝑎 ) = 𝑎 ) |
| 165 |
6 7 9 10 11 12 13 14 2 19 31 82 121 136 164
|
islmodd |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |