Step |
Hyp |
Ref |
Expression |
1 |
|
prdslmodd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdslmodd.s |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
3 |
|
prdslmodd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
prdslmodd.rm |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) |
5 |
|
prdslmodd.rs |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
8 |
4 3
|
fexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
9 |
1 2 8
|
prdssca |
⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑌 ) ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) ) |
11 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
12 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) ) |
15 |
|
lmodgrp |
⊢ ( 𝑎 ∈ LMod → 𝑎 ∈ Grp ) |
16 |
15
|
ssriv |
⊢ LMod ⊆ Grp |
17 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ LMod ∧ LMod ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) |
18 |
4 16 17
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
19 |
1 3 2 18
|
prdsgrpd |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
21 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
24 |
3
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
29 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
30 |
1 20 21 22 23 25 26 27 28 29
|
prdsvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
31 |
30
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
32 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
34 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
35 |
5
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
37 |
34 36
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
38 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
39 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
40 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
42 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
44 |
1 20 38 39 41 42 43
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
45 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
46 |
1 20 38 39 41 45 43
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
47 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
48 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) |
49 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) |
50 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) |
51 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
52 |
47 48 49 50 51
|
lmodvsdi |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
53 |
33 37 44 46 52
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
54 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
55 |
1 20 38 39 41 42 45 54 43
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
56 |
55
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
57 |
1 20 21 22 38 39 41 34 42 43
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ) |
58 |
1 20 21 22 38 39 41 34 45 43
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
59 |
57 58
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
60 |
53 56 59
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
61 |
60
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
63 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
64 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
65 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
66 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑌 ∈ Grp ) |
67 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
68 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
69 |
20 54
|
grpcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
70 |
66 67 68 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
71 |
1 20 21 22 62 63 64 65 70
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
72 |
30
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ ( Base ‘ 𝑌 ) ) |
73 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
74 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
75 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
76 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
77 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
78 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
79 |
1 20 21 22 73 74 75 76 77 78
|
prdsvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
80 |
79
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
81 |
1 20 62 63 64 72 80 54
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
82 |
61 71 81
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
83 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
84 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
85 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
86 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
87 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
88 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
89 |
1 20 21 22 83 84 85 86 87 88
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
90 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
91 |
1 20 21 22 83 84 85 90 87 88
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) = ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
92 |
89 91
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
93 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
94 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( Base ‘ 𝑆 ) ) |
95 |
86 94
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
96 |
90 94
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
97 |
1 20 83 84 85 87 88
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
98 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
99 |
47 48 49 50 51 98
|
lmodvsdir |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
100 |
93 95 96 97 99
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
101 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑆 ) |
102 |
101
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( +g ‘ 𝑆 ) ) |
103 |
102
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) |
104 |
103
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
105 |
92 100 104
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
106 |
105
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
107 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ Ring ) |
108 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ V ) |
109 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
110 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
111 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
112 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
113 |
22 112
|
ringacl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
114 |
107 110 111 113
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
115 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑐 ∈ ( Base ‘ 𝑌 ) ) |
116 |
1 20 21 22 107 108 109 114 115
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
117 |
79
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
118 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ LMod ) |
119 |
1 20 21 22 107 108 118 111 115 101
|
prdsvscacl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ∈ ( Base ‘ 𝑌 ) ) |
120 |
1 20 107 108 109 117 119 54
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
121 |
106 116 120
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
122 |
91
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
123 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
124 |
47 49 50 51 123
|
lmodvsass |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∧ ( 𝑐 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
125 |
93 95 96 97 124
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
126 |
101
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( .r ‘ 𝑆 ) ) |
127 |
126
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ) |
128 |
127
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) |
129 |
122 125 128
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) |
130 |
129
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
131 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
132 |
22 131
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
133 |
107 110 111 132
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
134 |
1 20 21 22 107 108 109 133 115
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) |
135 |
1 20 21 22 107 108 109 110 119
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) |
136 |
130 134 135
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ( ·𝑠 ‘ 𝑌 ) 𝑐 ) = ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝑏 ( ·𝑠 ‘ 𝑌 ) 𝑐 ) ) ) |
137 |
5
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑆 ) ) |
138 |
137
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ 𝑆 ) ) |
139 |
138
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) |
140 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ LMod ) |
141 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
142 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ V ) |
143 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
144 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
145 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
146 |
1 20 141 142 143 144 145
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
147 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
148 |
47 49 50 147
|
lmodvs1 |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ LMod ∧ ( 𝑎 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
149 |
140 146 148
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
150 |
139 149
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) = ( 𝑎 ‘ 𝑦 ) ) |
151 |
150
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
152 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ Ring ) |
153 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
154 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 Fn 𝐼 ) |
155 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
156 |
22 155
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
157 |
2 156
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
158 |
157
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
159 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
160 |
1 20 21 22 152 153 154 158 159
|
prdsvscaval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑌 ) 𝑎 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) ) |
161 |
1 20 152 153 154 159
|
prdsbasfn |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 Fn 𝐼 ) |
162 |
|
dffn5 |
⊢ ( 𝑎 Fn 𝐼 ↔ 𝑎 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
163 |
161 162
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑦 ) ) ) |
164 |
151 160 163
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑌 ) 𝑎 ) = 𝑎 ) |
165 |
6 7 9 10 11 12 13 14 2 19 31 82 121 136 164
|
islmodd |
⊢ ( 𝜑 → 𝑌 ∈ LMod ) |