| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsvscacl.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsvscacl.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsvscacl.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 4 |  | prdsvscacl.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | prdsvscacl.s | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 6 |  | prdsvscacl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 7 |  | prdsvscacl.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ LMod ) | 
						
							| 8 |  | prdsvscacl.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐾 ) | 
						
							| 9 |  | prdsvscacl.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 10 |  | prdsvscacl.sr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) )  =  𝑆 ) | 
						
							| 11 | 7 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 12 | 1 2 3 4 5 6 11 8 9 | prdsvscaval | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 13 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑥 )  ∈  LMod ) | 
						
							| 14 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐹  ∈  𝐾 ) | 
						
							| 15 | 10 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 16 | 15 4 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  𝐾 ) | 
						
							| 17 | 14 16 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐹  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑆  ∈  Ring ) | 
						
							| 19 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 20 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 21 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐺  ∈  𝐵 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 ) | 
						
							| 23 | 1 2 18 19 20 21 22 | prdsbasprj | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 25 |  | eqid | ⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 26 |  | eqid | ⊢ (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) )  =  (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 28 | 24 25 26 27 | lmodvscl | ⊢ ( ( ( 𝑅 ‘ 𝑥 )  ∈  LMod  ∧  𝐹  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) )  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) )  →  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 29 | 13 17 23 28 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 31 | 1 2 5 6 11 | prdsbasmpt | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐼  ↦  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  ∈  𝐵  ↔  ∀ 𝑥  ∈  𝐼 ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 30 31 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝐹 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  ∈  𝐵 ) | 
						
							| 33 | 12 32 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐺 )  ∈  𝐵 ) |