Step |
Hyp |
Ref |
Expression |
1 |
|
prdsvscacl.y |
|- Y = ( S Xs_ R ) |
2 |
|
prdsvscacl.b |
|- B = ( Base ` Y ) |
3 |
|
prdsvscacl.t |
|- .x. = ( .s ` Y ) |
4 |
|
prdsvscacl.k |
|- K = ( Base ` S ) |
5 |
|
prdsvscacl.s |
|- ( ph -> S e. Ring ) |
6 |
|
prdsvscacl.i |
|- ( ph -> I e. W ) |
7 |
|
prdsvscacl.r |
|- ( ph -> R : I --> LMod ) |
8 |
|
prdsvscacl.f |
|- ( ph -> F e. K ) |
9 |
|
prdsvscacl.g |
|- ( ph -> G e. B ) |
10 |
|
prdsvscacl.sr |
|- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
11 |
7
|
ffnd |
|- ( ph -> R Fn I ) |
12 |
1 2 3 4 5 6 11 8 9
|
prdsvscaval |
|- ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |
13 |
7
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( R ` x ) e. LMod ) |
14 |
8
|
adantr |
|- ( ( ph /\ x e. I ) -> F e. K ) |
15 |
10
|
fveq2d |
|- ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` S ) ) |
16 |
15 4
|
eqtr4di |
|- ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = K ) |
17 |
14 16
|
eleqtrrd |
|- ( ( ph /\ x e. I ) -> F e. ( Base ` ( Scalar ` ( R ` x ) ) ) ) |
18 |
5
|
adantr |
|- ( ( ph /\ x e. I ) -> S e. Ring ) |
19 |
6
|
adantr |
|- ( ( ph /\ x e. I ) -> I e. W ) |
20 |
11
|
adantr |
|- ( ( ph /\ x e. I ) -> R Fn I ) |
21 |
9
|
adantr |
|- ( ( ph /\ x e. I ) -> G e. B ) |
22 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
23 |
1 2 18 19 20 21 22
|
prdsbasprj |
|- ( ( ph /\ x e. I ) -> ( G ` x ) e. ( Base ` ( R ` x ) ) ) |
24 |
|
eqid |
|- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
25 |
|
eqid |
|- ( Scalar ` ( R ` x ) ) = ( Scalar ` ( R ` x ) ) |
26 |
|
eqid |
|- ( .s ` ( R ` x ) ) = ( .s ` ( R ` x ) ) |
27 |
|
eqid |
|- ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` ( Scalar ` ( R ` x ) ) ) |
28 |
24 25 26 27
|
lmodvscl |
|- ( ( ( R ` x ) e. LMod /\ F e. ( Base ` ( Scalar ` ( R ` x ) ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
29 |
13 17 23 28
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
30 |
29
|
ralrimiva |
|- ( ph -> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
31 |
1 2 5 6 11
|
prdsbasmpt |
|- ( ph -> ( ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B <-> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) ) |
32 |
30 31
|
mpbird |
|- ( ph -> ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B ) |
33 |
12 32
|
eqeltrd |
|- ( ph -> ( F .x. G ) e. B ) |