| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsvscacl.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
prdsvscacl.b |
|- B = ( Base ` Y ) |
| 3 |
|
prdsvscacl.t |
|- .x. = ( .s ` Y ) |
| 4 |
|
prdsvscacl.k |
|- K = ( Base ` S ) |
| 5 |
|
prdsvscacl.s |
|- ( ph -> S e. Ring ) |
| 6 |
|
prdsvscacl.i |
|- ( ph -> I e. W ) |
| 7 |
|
prdsvscacl.r |
|- ( ph -> R : I --> LMod ) |
| 8 |
|
prdsvscacl.f |
|- ( ph -> F e. K ) |
| 9 |
|
prdsvscacl.g |
|- ( ph -> G e. B ) |
| 10 |
|
prdsvscacl.sr |
|- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
| 11 |
7
|
ffnd |
|- ( ph -> R Fn I ) |
| 12 |
1 2 3 4 5 6 11 8 9
|
prdsvscaval |
|- ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 13 |
7
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( R ` x ) e. LMod ) |
| 14 |
8
|
adantr |
|- ( ( ph /\ x e. I ) -> F e. K ) |
| 15 |
10
|
fveq2d |
|- ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` S ) ) |
| 16 |
15 4
|
eqtr4di |
|- ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = K ) |
| 17 |
14 16
|
eleqtrrd |
|- ( ( ph /\ x e. I ) -> F e. ( Base ` ( Scalar ` ( R ` x ) ) ) ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ x e. I ) -> S e. Ring ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ x e. I ) -> I e. W ) |
| 20 |
11
|
adantr |
|- ( ( ph /\ x e. I ) -> R Fn I ) |
| 21 |
9
|
adantr |
|- ( ( ph /\ x e. I ) -> G e. B ) |
| 22 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
| 23 |
1 2 18 19 20 21 22
|
prdsbasprj |
|- ( ( ph /\ x e. I ) -> ( G ` x ) e. ( Base ` ( R ` x ) ) ) |
| 24 |
|
eqid |
|- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
| 25 |
|
eqid |
|- ( Scalar ` ( R ` x ) ) = ( Scalar ` ( R ` x ) ) |
| 26 |
|
eqid |
|- ( .s ` ( R ` x ) ) = ( .s ` ( R ` x ) ) |
| 27 |
|
eqid |
|- ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` ( Scalar ` ( R ` x ) ) ) |
| 28 |
24 25 26 27
|
lmodvscl |
|- ( ( ( R ` x ) e. LMod /\ F e. ( Base ` ( Scalar ` ( R ` x ) ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 29 |
13 17 23 28
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 30 |
29
|
ralrimiva |
|- ( ph -> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 31 |
1 2 5 6 11
|
prdsbasmpt |
|- ( ph -> ( ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B <-> A. x e. I ( F ( .s ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) ) |
| 32 |
30 31
|
mpbird |
|- ( ph -> ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. B ) |
| 33 |
12 32
|
eqeltrd |
|- ( ph -> ( F .x. G ) e. B ) |