Metamath Proof Explorer


Theorem dsmmlmod

Description: The direct sum of a family of modules is a module. See also the remark in Lang p. 128. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmlss.i φIW
dsmmlss.s φSRing
dsmmlss.r φR:ILMod
dsmmlss.k φxIScalarRx=S
dsmmlmod.c C=SmR
Assertion dsmmlmod φCLMod

Proof

Step Hyp Ref Expression
1 dsmmlss.i φIW
2 dsmmlss.s φSRing
3 dsmmlss.r φR:ILMod
4 dsmmlss.k φxIScalarRx=S
5 dsmmlmod.c C=SmR
6 eqid S𝑠R=S𝑠R
7 6 2 1 3 4 prdslmodd φS𝑠RLMod
8 eqid LSubSpS𝑠R=LSubSpS𝑠R
9 eqid BaseSmR=BaseSmR
10 1 2 3 4 6 8 9 dsmmlss φBaseSmRLSubSpS𝑠R
11 9 dsmmval2 SmR=S𝑠R𝑠BaseSmR
12 5 11 eqtri C=S𝑠R𝑠BaseSmR
13 12 8 lsslmod S𝑠RLModBaseSmRLSubSpS𝑠RCLMod
14 7 10 13 syl2anc φCLMod