| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dsmmlss.i |
|
| 2 |
|
dsmmlss.s |
|
| 3 |
|
dsmmlss.r |
|
| 4 |
|
dsmmlss.k |
|
| 5 |
|
dsmmlss.p |
|
| 6 |
|
dsmmlss.u |
|
| 7 |
|
dsmmlss.h |
|
| 8 |
|
lmodgrp |
|
| 9 |
8
|
ssriv |
|
| 10 |
|
fss |
|
| 11 |
3 9 10
|
sylancl |
|
| 12 |
5 7 1 2 11
|
dsmmsubg |
|
| 13 |
5 2 1 3 4
|
prdslmodd |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simprl |
|
| 16 |
|
simprr |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
3
|
ffnd |
|
| 20 |
5 17 18 7 1 19
|
dsmmelbas |
|
| 21 |
20
|
adantr |
|
| 22 |
16 21
|
mpbid |
|
| 23 |
22
|
simpld |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
18 24 25 26
|
lmodvscl |
|
| 28 |
14 15 23 27
|
syl3anc |
|
| 29 |
22
|
simprd |
|
| 30 |
|
eqid |
|
| 31 |
2
|
ad2antrr |
|
| 32 |
1
|
ad2antrr |
|
| 33 |
19
|
ad2antrr |
|
| 34 |
3 1
|
fexd |
|
| 35 |
5 2 34
|
prdssca |
|
| 36 |
35
|
fveq2d |
|
| 37 |
36
|
eleq2d |
|
| 38 |
37
|
biimpar |
|
| 39 |
38
|
adantrr |
|
| 40 |
39
|
adantr |
|
| 41 |
23
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
5 18 25 30 31 32 33 40 41 42
|
prdsvscafval |
|
| 44 |
43
|
adantrr |
|
| 45 |
3
|
ffvelcdmda |
|
| 46 |
45
|
adantlr |
|
| 47 |
|
simplrl |
|
| 48 |
35
|
adantr |
|
| 49 |
4 48
|
eqtrd |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
adantlr |
|
| 52 |
47 51
|
eleqtrrd |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
53 54 55 56
|
lmodvs0 |
|
| 58 |
46 52 57
|
syl2anc |
|
| 59 |
|
oveq2 |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
58 60
|
syl5ibrcom |
|
| 62 |
61
|
impr |
|
| 63 |
44 62
|
eqtrd |
|
| 64 |
63
|
expr |
|
| 65 |
64
|
necon3d |
|
| 66 |
65
|
ss2rabdv |
|
| 67 |
29 66
|
ssfid |
|
| 68 |
5 17 18 7 1 19
|
dsmmelbas |
|
| 69 |
68
|
adantr |
|
| 70 |
28 67 69
|
mpbir2and |
|
| 71 |
70
|
ralrimivva |
|
| 72 |
24 26 18 25 6
|
islss4 |
|
| 73 |
13 72
|
syl |
|
| 74 |
12 71 73
|
mpbir2and |
|