Metamath Proof Explorer


Theorem dsmmlss

Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmlss.i φ I W
dsmmlss.s φ S Ring
dsmmlss.r φ R : I LMod
dsmmlss.k φ x I Scalar R x = S
dsmmlss.p P = S 𝑠 R
dsmmlss.u U = LSubSp P
dsmmlss.h H = Base S m R
Assertion dsmmlss φ H U

Proof

Step Hyp Ref Expression
1 dsmmlss.i φ I W
2 dsmmlss.s φ S Ring
3 dsmmlss.r φ R : I LMod
4 dsmmlss.k φ x I Scalar R x = S
5 dsmmlss.p P = S 𝑠 R
6 dsmmlss.u U = LSubSp P
7 dsmmlss.h H = Base S m R
8 lmodgrp a LMod a Grp
9 8 ssriv LMod Grp
10 fss R : I LMod LMod Grp R : I Grp
11 3 9 10 sylancl φ R : I Grp
12 5 7 1 2 11 dsmmsubg φ H SubGrp P
13 5 2 1 3 4 prdslmodd φ P LMod
14 13 adantr φ a Base Scalar P b H P LMod
15 simprl φ a Base Scalar P b H a Base Scalar P
16 simprr φ a Base Scalar P b H b H
17 eqid S m R = S m R
18 eqid Base P = Base P
19 3 ffnd φ R Fn I
20 5 17 18 7 1 19 dsmmelbas φ b H b Base P x I | b x 0 R x Fin
21 20 adantr φ a Base Scalar P b H b H b Base P x I | b x 0 R x Fin
22 16 21 mpbid φ a Base Scalar P b H b Base P x I | b x 0 R x Fin
23 22 simpld φ a Base Scalar P b H b Base P
24 eqid Scalar P = Scalar P
25 eqid P = P
26 eqid Base Scalar P = Base Scalar P
27 18 24 25 26 lmodvscl P LMod a Base Scalar P b Base P a P b Base P
28 14 15 23 27 syl3anc φ a Base Scalar P b H a P b Base P
29 22 simprd φ a Base Scalar P b H x I | b x 0 R x Fin
30 eqid Base S = Base S
31 2 ad2antrr φ a Base Scalar P b H x I S Ring
32 1 ad2antrr φ a Base Scalar P b H x I I W
33 19 ad2antrr φ a Base Scalar P b H x I R Fn I
34 3 1 fexd φ R V
35 5 2 34 prdssca φ S = Scalar P
36 35 fveq2d φ Base S = Base Scalar P
37 36 eleq2d φ a Base S a Base Scalar P
38 37 biimpar φ a Base Scalar P a Base S
39 38 adantrr φ a Base Scalar P b H a Base S
40 39 adantr φ a Base Scalar P b H x I a Base S
41 23 adantr φ a Base Scalar P b H x I b Base P
42 simpr φ a Base Scalar P b H x I x I
43 5 18 25 30 31 32 33 40 41 42 prdsvscafval φ a Base Scalar P b H x I a P b x = a R x b x
44 43 adantrr φ a Base Scalar P b H x I b x = 0 R x a P b x = a R x b x
45 3 ffvelrnda φ x I R x LMod
46 45 adantlr φ a Base Scalar P b H x I R x LMod
47 simplrl φ a Base Scalar P b H x I a Base Scalar P
48 35 adantr φ x I S = Scalar P
49 4 48 eqtrd φ x I Scalar R x = Scalar P
50 49 fveq2d φ x I Base Scalar R x = Base Scalar P
51 50 adantlr φ a Base Scalar P b H x I Base Scalar R x = Base Scalar P
52 47 51 eleqtrrd φ a Base Scalar P b H x I a Base Scalar R x
53 eqid Scalar R x = Scalar R x
54 eqid R x = R x
55 eqid Base Scalar R x = Base Scalar R x
56 eqid 0 R x = 0 R x
57 53 54 55 56 lmodvs0 R x LMod a Base Scalar R x a R x 0 R x = 0 R x
58 46 52 57 syl2anc φ a Base Scalar P b H x I a R x 0 R x = 0 R x
59 oveq2 b x = 0 R x a R x b x = a R x 0 R x
60 59 eqeq1d b x = 0 R x a R x b x = 0 R x a R x 0 R x = 0 R x
61 58 60 syl5ibrcom φ a Base Scalar P b H x I b x = 0 R x a R x b x = 0 R x
62 61 impr φ a Base Scalar P b H x I b x = 0 R x a R x b x = 0 R x
63 44 62 eqtrd φ a Base Scalar P b H x I b x = 0 R x a P b x = 0 R x
64 63 expr φ a Base Scalar P b H x I b x = 0 R x a P b x = 0 R x
65 64 necon3d φ a Base Scalar P b H x I a P b x 0 R x b x 0 R x
66 65 ss2rabdv φ a Base Scalar P b H x I | a P b x 0 R x x I | b x 0 R x
67 29 66 ssfid φ a Base Scalar P b H x I | a P b x 0 R x Fin
68 5 17 18 7 1 19 dsmmelbas φ a P b H a P b Base P x I | a P b x 0 R x Fin
69 68 adantr φ a Base Scalar P b H a P b H a P b Base P x I | a P b x 0 R x Fin
70 28 67 69 mpbir2and φ a Base Scalar P b H a P b H
71 70 ralrimivva φ a Base Scalar P b H a P b H
72 24 26 18 25 6 islss4 P LMod H U H SubGrp P a Base Scalar P b H a P b H
73 13 72 syl φ H U H SubGrp P a Base Scalar P b H a P b H
74 12 71 73 mpbir2and φ H U