| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dsmmlss.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 2 |
|
dsmmlss.s |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 3 |
|
dsmmlss.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) |
| 4 |
|
dsmmlss.k |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = 𝑆 ) |
| 5 |
|
dsmmlss.p |
⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) |
| 6 |
|
dsmmlss.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑃 ) |
| 7 |
|
dsmmlss.h |
⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) |
| 8 |
|
lmodgrp |
⊢ ( 𝑎 ∈ LMod → 𝑎 ∈ Grp ) |
| 9 |
8
|
ssriv |
⊢ LMod ⊆ Grp |
| 10 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ LMod ∧ LMod ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) |
| 11 |
3 9 10
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 12 |
5 7 1 2 11
|
dsmmsubg |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ) |
| 13 |
5 2 1 3 4
|
prdslmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑃 ∈ LMod ) |
| 15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ 𝐻 ) |
| 17 |
|
eqid |
⊢ ( 𝑆 ⊕m 𝑅 ) = ( 𝑆 ⊕m 𝑅 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 19 |
3
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 20 |
5 17 18 7 1 19
|
dsmmelbas |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 22 |
16 21
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) |
| 23 |
22
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
| 24 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 25 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 26 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 27 |
18 24 25 26
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
| 28 |
14 15 23 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
| 29 |
22
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 31 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 32 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 33 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 34 |
3 1
|
fexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 35 |
5 2 34
|
prdssca |
⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
| 36 |
35
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 37 |
36
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑆 ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 38 |
37
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 39 |
38
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 41 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
| 42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 43 |
5 18 25 30 31 32 33 40 41 42
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) |
| 44 |
43
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) |
| 45 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ LMod ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ LMod ) |
| 47 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 48 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
| 49 |
4 48
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Scalar ‘ 𝑃 ) ) |
| 50 |
49
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 51 |
50
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 52 |
47 51
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 53 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) |
| 54 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) |
| 55 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 56 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) |
| 57 |
53 54 55 56
|
lmodvs0 |
⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 58 |
46 52 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 59 |
|
oveq2 |
⊢ ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 60 |
59
|
eqeq1d |
⊢ ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ↔ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 61 |
58 60
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 62 |
61
|
impr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 63 |
44 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 64 |
63
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 65 |
64
|
necon3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 66 |
65
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ⊆ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
| 67 |
29 66
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) |
| 68 |
5 17 18 7 1 19
|
dsmmelbas |
⊢ ( 𝜑 → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 70 |
28 67 69
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) |
| 71 |
70
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) |
| 72 |
24 26 18 25 6
|
islss4 |
⊢ ( 𝑃 ∈ LMod → ( 𝐻 ∈ 𝑈 ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) ) ) |
| 73 |
13 72
|
syl |
⊢ ( 𝜑 → ( 𝐻 ∈ 𝑈 ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) ) ) |
| 74 |
12 71 73
|
mpbir2and |
⊢ ( 𝜑 → 𝐻 ∈ 𝑈 ) |