Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmlss.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
2 |
|
dsmmlss.s |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
3 |
|
dsmmlss.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) |
4 |
|
dsmmlss.k |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = 𝑆 ) |
5 |
|
dsmmlss.p |
⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) |
6 |
|
dsmmlss.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑃 ) |
7 |
|
dsmmlss.h |
⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) |
8 |
|
lmodgrp |
⊢ ( 𝑎 ∈ LMod → 𝑎 ∈ Grp ) |
9 |
8
|
ssriv |
⊢ LMod ⊆ Grp |
10 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ LMod ∧ LMod ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) |
11 |
3 9 10
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
12 |
5 7 1 2 11
|
dsmmsubg |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ) |
13 |
5 2 1 3 4
|
prdslmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑃 ∈ LMod ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ 𝐻 ) |
17 |
|
eqid |
⊢ ( 𝑆 ⊕m 𝑅 ) = ( 𝑆 ⊕m 𝑅 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
19 |
3
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
20 |
5 17 18 7 1 19
|
dsmmelbas |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
22 |
16 21
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) |
23 |
22
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
24 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
25 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
26 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
27 |
18 24 25 26
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
28 |
14 15 23 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
29 |
22
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
31 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
32 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
33 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
34 |
3 1
|
fexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
35 |
5 2 34
|
prdssca |
⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
36 |
35
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
37 |
36
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑆 ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
38 |
37
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
39 |
38
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
41 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
43 |
5 18 25 30 31 32 33 40 41 42
|
prdsvscafval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) |
44 |
43
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) |
45 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ LMod ) |
46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ LMod ) |
47 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
48 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
49 |
4 48
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Scalar ‘ 𝑃 ) ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
51 |
50
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
52 |
47 51
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
53 |
|
eqid |
⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) |
54 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) |
55 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
56 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) |
57 |
53 54 55 56
|
lmodvs0 |
⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
58 |
46 52 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
59 |
|
oveq2 |
⊢ ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
60 |
59
|
eqeq1d |
⊢ ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ↔ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
61 |
58 60
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
62 |
61
|
impr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
63 |
44 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
64 |
63
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
65 |
64
|
necon3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
66 |
65
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ⊆ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
67 |
29 66
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) |
68 |
5 17 18 7 1 19
|
dsmmelbas |
⊢ ( 𝜑 → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
70 |
28 67 69
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) |
71 |
70
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) |
72 |
24 26 18 25 6
|
islss4 |
⊢ ( 𝑃 ∈ LMod → ( 𝐻 ∈ 𝑈 ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) ) ) |
73 |
13 72
|
syl |
⊢ ( 𝜑 → ( 𝐻 ∈ 𝑈 ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) ) ) |
74 |
12 71 73
|
mpbir2and |
⊢ ( 𝜑 → 𝐻 ∈ 𝑈 ) |