Metamath Proof Explorer


Theorem dsmmsubg

Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmsubg.p 𝑃 = ( 𝑆 Xs 𝑅 )
dsmmsubg.h 𝐻 = ( Base ‘ ( 𝑆m 𝑅 ) )
dsmmsubg.i ( 𝜑𝐼𝑊 )
dsmmsubg.s ( 𝜑𝑆𝑉 )
dsmmsubg.r ( 𝜑𝑅 : 𝐼 ⟶ Grp )
Assertion dsmmsubg ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 dsmmsubg.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 dsmmsubg.h 𝐻 = ( Base ‘ ( 𝑆m 𝑅 ) )
3 dsmmsubg.i ( 𝜑𝐼𝑊 )
4 dsmmsubg.s ( 𝜑𝑆𝑉 )
5 dsmmsubg.r ( 𝜑𝑅 : 𝐼 ⟶ Grp )
6 eqidd ( 𝜑 → ( 𝑃s 𝐻 ) = ( 𝑃s 𝐻 ) )
7 eqidd ( 𝜑 → ( 0g𝑃 ) = ( 0g𝑃 ) )
8 eqidd ( 𝜑 → ( +g𝑃 ) = ( +g𝑃 ) )
9 fex ( ( 𝑅 : 𝐼 ⟶ Grp ∧ 𝐼𝑊 ) → 𝑅 ∈ V )
10 5 3 9 syl2anc ( 𝜑𝑅 ∈ V )
11 eqid { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } = { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin }
12 11 dsmmbase ( 𝑅 ∈ V → { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆m 𝑅 ) ) )
13 10 12 syl ( 𝜑 → { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆m 𝑅 ) ) )
14 ssrab2 { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } ⊆ ( Base ‘ ( 𝑆 Xs 𝑅 ) )
15 13 14 eqsstrrdi ( 𝜑 → ( Base ‘ ( 𝑆m 𝑅 ) ) ⊆ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )
16 1 fveq2i ( Base ‘ 𝑃 ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) )
17 15 2 16 3sstr4g ( 𝜑𝐻 ⊆ ( Base ‘ 𝑃 ) )
18 grpmnd ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd )
19 18 ssriv Grp ⊆ Mnd
20 fss ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd )
21 5 19 20 sylancl ( 𝜑𝑅 : 𝐼 ⟶ Mnd )
22 eqid ( 0g𝑃 ) = ( 0g𝑃 )
23 1 2 3 4 21 22 dsmm0cl ( 𝜑 → ( 0g𝑃 ) ∈ 𝐻 )
24 3 3ad2ant1 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝐼𝑊 )
25 4 3ad2ant1 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑆𝑉 )
26 21 3ad2ant1 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑅 : 𝐼 ⟶ Mnd )
27 simp2 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑎𝐻 )
28 simp3 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑏𝐻 )
29 eqid ( +g𝑃 ) = ( +g𝑃 )
30 1 2 24 25 26 27 28 29 dsmmacl ( ( 𝜑𝑎𝐻𝑏𝐻 ) → ( 𝑎 ( +g𝑃 ) 𝑏 ) ∈ 𝐻 )
31 1 3 4 5 prdsgrpd ( 𝜑𝑃 ∈ Grp )
32 31 adantr ( ( 𝜑𝑎𝐻 ) → 𝑃 ∈ Grp )
33 17 sselda ( ( 𝜑𝑎𝐻 ) → 𝑎 ∈ ( Base ‘ 𝑃 ) )
34 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
35 eqid ( invg𝑃 ) = ( invg𝑃 )
36 34 35 grpinvcl ( ( 𝑃 ∈ Grp ∧ 𝑎 ∈ ( Base ‘ 𝑃 ) ) → ( ( invg𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) )
37 32 33 36 syl2anc ( ( 𝜑𝑎𝐻 ) → ( ( invg𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) )
38 simpr ( ( 𝜑𝑎𝐻 ) → 𝑎𝐻 )
39 eqid ( 𝑆m 𝑅 ) = ( 𝑆m 𝑅 )
40 3 adantr ( ( 𝜑𝑎𝐻 ) → 𝐼𝑊 )
41 5 ffnd ( 𝜑𝑅 Fn 𝐼 )
42 41 adantr ( ( 𝜑𝑎𝐻 ) → 𝑅 Fn 𝐼 )
43 1 39 34 2 40 42 dsmmelbas ( ( 𝜑𝑎𝐻 ) → ( 𝑎𝐻 ↔ ( 𝑎 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin ) ) )
44 38 43 mpbid ( ( 𝜑𝑎𝐻 ) → ( 𝑎 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin ) )
45 44 simprd ( ( 𝜑𝑎𝐻 ) → { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin )
46 3 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝐼𝑊 )
47 4 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑆𝑉 )
48 5 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑅 : 𝐼 ⟶ Grp )
49 33 adantr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑃 ) )
50 simpr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑏𝐼 )
51 1 46 47 48 34 35 49 50 prdsinvgd2 ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) )
52 51 adantrr ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) )
53 fveq2 ( ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) )
54 53 ad2antll ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) )
55 5 ffvelrnda ( ( 𝜑𝑏𝐼 ) → ( 𝑅𝑏 ) ∈ Grp )
56 55 adantlr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( 𝑅𝑏 ) ∈ Grp )
57 eqid ( 0g ‘ ( 𝑅𝑏 ) ) = ( 0g ‘ ( 𝑅𝑏 ) )
58 eqid ( invg ‘ ( 𝑅𝑏 ) ) = ( invg ‘ ( 𝑅𝑏 ) )
59 57 58 grpinvid ( ( 𝑅𝑏 ) ∈ Grp → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
60 56 59 syl ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
61 60 adantrr ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
62 52 54 61 3eqtrd ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
63 62 expr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) )
64 63 necon3d ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) → ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) ) )
65 64 ss2rabdv ( ( 𝜑𝑎𝐻 ) → { 𝑏𝐼 ∣ ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ⊆ { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } )
66 45 65 ssfid ( ( 𝜑𝑎𝐻 ) → { 𝑏𝐼 ∣ ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin )
67 1 39 34 2 40 42 dsmmelbas ( ( 𝜑𝑎𝐻 ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ∈ 𝐻 ↔ ( ( ( invg𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏𝐼 ∣ ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin ) ) )
68 37 66 67 mpbir2and ( ( 𝜑𝑎𝐻 ) → ( ( invg𝑃 ) ‘ 𝑎 ) ∈ 𝐻 )
69 6 7 8 17 23 30 68 31 issubgrpd2 ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝑃 ) )