| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dsmmsubg.p |
|- P = ( S Xs_ R ) |
| 2 |
|
dsmmsubg.h |
|- H = ( Base ` ( S (+)m R ) ) |
| 3 |
|
dsmmsubg.i |
|- ( ph -> I e. W ) |
| 4 |
|
dsmmsubg.s |
|- ( ph -> S e. V ) |
| 5 |
|
dsmmsubg.r |
|- ( ph -> R : I --> Grp ) |
| 6 |
|
eqidd |
|- ( ph -> ( P |`s H ) = ( P |`s H ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( 0g ` P ) = ( 0g ` P ) ) |
| 8 |
|
eqidd |
|- ( ph -> ( +g ` P ) = ( +g ` P ) ) |
| 9 |
5 3
|
fexd |
|- ( ph -> R e. _V ) |
| 10 |
|
eqid |
|- { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } |
| 11 |
10
|
dsmmbase |
|- ( R e. _V -> { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 12 |
9 11
|
syl |
|- ( ph -> { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 13 |
|
ssrab2 |
|- { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) |
| 14 |
12 13
|
eqsstrrdi |
|- ( ph -> ( Base ` ( S (+)m R ) ) C_ ( Base ` ( S Xs_ R ) ) ) |
| 15 |
1
|
fveq2i |
|- ( Base ` P ) = ( Base ` ( S Xs_ R ) ) |
| 16 |
14 2 15
|
3sstr4g |
|- ( ph -> H C_ ( Base ` P ) ) |
| 17 |
|
grpmnd |
|- ( a e. Grp -> a e. Mnd ) |
| 18 |
17
|
ssriv |
|- Grp C_ Mnd |
| 19 |
|
fss |
|- ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) |
| 20 |
5 18 19
|
sylancl |
|- ( ph -> R : I --> Mnd ) |
| 21 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 22 |
1 2 3 4 20 21
|
dsmm0cl |
|- ( ph -> ( 0g ` P ) e. H ) |
| 23 |
3
|
3ad2ant1 |
|- ( ( ph /\ a e. H /\ b e. H ) -> I e. W ) |
| 24 |
4
|
3ad2ant1 |
|- ( ( ph /\ a e. H /\ b e. H ) -> S e. V ) |
| 25 |
20
|
3ad2ant1 |
|- ( ( ph /\ a e. H /\ b e. H ) -> R : I --> Mnd ) |
| 26 |
|
simp2 |
|- ( ( ph /\ a e. H /\ b e. H ) -> a e. H ) |
| 27 |
|
simp3 |
|- ( ( ph /\ a e. H /\ b e. H ) -> b e. H ) |
| 28 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 29 |
1 2 23 24 25 26 27 28
|
dsmmacl |
|- ( ( ph /\ a e. H /\ b e. H ) -> ( a ( +g ` P ) b ) e. H ) |
| 30 |
1 3 4 5
|
prdsgrpd |
|- ( ph -> P e. Grp ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ a e. H ) -> P e. Grp ) |
| 32 |
16
|
sselda |
|- ( ( ph /\ a e. H ) -> a e. ( Base ` P ) ) |
| 33 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 34 |
|
eqid |
|- ( invg ` P ) = ( invg ` P ) |
| 35 |
33 34
|
grpinvcl |
|- ( ( P e. Grp /\ a e. ( Base ` P ) ) -> ( ( invg ` P ) ` a ) e. ( Base ` P ) ) |
| 36 |
31 32 35
|
syl2anc |
|- ( ( ph /\ a e. H ) -> ( ( invg ` P ) ` a ) e. ( Base ` P ) ) |
| 37 |
|
simpr |
|- ( ( ph /\ a e. H ) -> a e. H ) |
| 38 |
|
eqid |
|- ( S (+)m R ) = ( S (+)m R ) |
| 39 |
3
|
adantr |
|- ( ( ph /\ a e. H ) -> I e. W ) |
| 40 |
5
|
ffnd |
|- ( ph -> R Fn I ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ a e. H ) -> R Fn I ) |
| 42 |
1 38 33 2 39 41
|
dsmmelbas |
|- ( ( ph /\ a e. H ) -> ( a e. H <-> ( a e. ( Base ` P ) /\ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) ) |
| 43 |
37 42
|
mpbid |
|- ( ( ph /\ a e. H ) -> ( a e. ( Base ` P ) /\ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) |
| 44 |
43
|
simprd |
|- ( ( ph /\ a e. H ) -> { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) |
| 45 |
3
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> I e. W ) |
| 46 |
4
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> S e. V ) |
| 47 |
5
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> R : I --> Grp ) |
| 48 |
32
|
adantr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> a e. ( Base ` P ) ) |
| 49 |
|
simpr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> b e. I ) |
| 50 |
1 45 46 47 33 34 48 49
|
prdsinvgd2 |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
| 51 |
50
|
adantrr |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
| 52 |
|
fveq2 |
|- ( ( a ` b ) = ( 0g ` ( R ` b ) ) -> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) = ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) ) |
| 53 |
52
|
ad2antll |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) = ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) ) |
| 54 |
5
|
ffvelcdmda |
|- ( ( ph /\ b e. I ) -> ( R ` b ) e. Grp ) |
| 55 |
54
|
adantlr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( R ` b ) e. Grp ) |
| 56 |
|
eqid |
|- ( 0g ` ( R ` b ) ) = ( 0g ` ( R ` b ) ) |
| 57 |
|
eqid |
|- ( invg ` ( R ` b ) ) = ( invg ` ( R ` b ) ) |
| 58 |
56 57
|
grpinvid |
|- ( ( R ` b ) e. Grp -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
| 59 |
55 58
|
syl |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
| 60 |
59
|
adantrr |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
| 61 |
51 53 60
|
3eqtrd |
|- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( 0g ` ( R ` b ) ) ) |
| 62 |
61
|
expr |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( a ` b ) = ( 0g ` ( R ` b ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( 0g ` ( R ` b ) ) ) ) |
| 63 |
62
|
necon3d |
|- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) -> ( a ` b ) =/= ( 0g ` ( R ` b ) ) ) ) |
| 64 |
63
|
ss2rabdv |
|- ( ( ph /\ a e. H ) -> { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } C_ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } ) |
| 65 |
44 64
|
ssfid |
|- ( ( ph /\ a e. H ) -> { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) |
| 66 |
1 38 33 2 39 41
|
dsmmelbas |
|- ( ( ph /\ a e. H ) -> ( ( ( invg ` P ) ` a ) e. H <-> ( ( ( invg ` P ) ` a ) e. ( Base ` P ) /\ { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) ) |
| 67 |
36 65 66
|
mpbir2and |
|- ( ( ph /\ a e. H ) -> ( ( invg ` P ) ` a ) e. H ) |
| 68 |
6 7 8 16 22 29 67 30
|
issubgrpd2 |
|- ( ph -> H e. ( SubGrp ` P ) ) |