| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dsmmsubg.p |
|
| 2 |
|
dsmmsubg.h |
|
| 3 |
|
dsmmsubg.i |
|
| 4 |
|
dsmmsubg.s |
|
| 5 |
|
dsmmsubg.r |
|
| 6 |
|
eqidd |
|
| 7 |
|
eqidd |
|
| 8 |
|
eqidd |
|
| 9 |
5 3
|
fexd |
|
| 10 |
|
eqid |
|
| 11 |
10
|
dsmmbase |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
ssrab2 |
|
| 14 |
12 13
|
eqsstrrdi |
|
| 15 |
1
|
fveq2i |
|
| 16 |
14 2 15
|
3sstr4g |
|
| 17 |
|
grpmnd |
|
| 18 |
17
|
ssriv |
|
| 19 |
|
fss |
|
| 20 |
5 18 19
|
sylancl |
|
| 21 |
|
eqid |
|
| 22 |
1 2 3 4 20 21
|
dsmm0cl |
|
| 23 |
3
|
3ad2ant1 |
|
| 24 |
4
|
3ad2ant1 |
|
| 25 |
20
|
3ad2ant1 |
|
| 26 |
|
simp2 |
|
| 27 |
|
simp3 |
|
| 28 |
|
eqid |
|
| 29 |
1 2 23 24 25 26 27 28
|
dsmmacl |
|
| 30 |
1 3 4 5
|
prdsgrpd |
|
| 31 |
30
|
adantr |
|
| 32 |
16
|
sselda |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
33 34
|
grpinvcl |
|
| 36 |
31 32 35
|
syl2anc |
|
| 37 |
|
simpr |
|
| 38 |
|
eqid |
|
| 39 |
3
|
adantr |
|
| 40 |
5
|
ffnd |
|
| 41 |
40
|
adantr |
|
| 42 |
1 38 33 2 39 41
|
dsmmelbas |
|
| 43 |
37 42
|
mpbid |
|
| 44 |
43
|
simprd |
|
| 45 |
3
|
ad2antrr |
|
| 46 |
4
|
ad2antrr |
|
| 47 |
5
|
ad2antrr |
|
| 48 |
32
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
1 45 46 47 33 34 48 49
|
prdsinvgd2 |
|
| 51 |
50
|
adantrr |
|
| 52 |
|
fveq2 |
|
| 53 |
52
|
ad2antll |
|
| 54 |
5
|
ffvelcdmda |
|
| 55 |
54
|
adantlr |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
56 57
|
grpinvid |
|
| 59 |
55 58
|
syl |
|
| 60 |
59
|
adantrr |
|
| 61 |
51 53 60
|
3eqtrd |
|
| 62 |
61
|
expr |
|
| 63 |
62
|
necon3d |
|
| 64 |
63
|
ss2rabdv |
|
| 65 |
44 64
|
ssfid |
|
| 66 |
1 38 33 2 39 41
|
dsmmelbas |
|
| 67 |
36 65 66
|
mpbir2and |
|
| 68 |
6 7 8 16 22 29 67 30
|
issubgrpd2 |
|