| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dsmmcl.p |
|
| 2 |
|
dsmmcl.h |
|
| 3 |
|
dsmmcl.i |
|
| 4 |
|
dsmmcl.s |
|
| 5 |
|
dsmmcl.r |
|
| 6 |
|
dsmmacl.j |
|
| 7 |
|
dsmmacl.k |
|
| 8 |
|
dsmmacl.a |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
5
|
ffnd |
|
| 12 |
1 10 9 2 3 11
|
dsmmelbas |
|
| 13 |
6 12
|
mpbid |
|
| 14 |
13
|
simpld |
|
| 15 |
1 10 9 2 3 11
|
dsmmelbas |
|
| 16 |
7 15
|
mpbid |
|
| 17 |
16
|
simpld |
|
| 18 |
1 9 8 4 3 5 14 17
|
prdsplusgcl |
|
| 19 |
4
|
adantr |
|
| 20 |
3
|
adantr |
|
| 21 |
11
|
adantr |
|
| 22 |
14
|
adantr |
|
| 23 |
17
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
1 9 19 20 21 22 23 8 24
|
prdsplusgfval |
|
| 26 |
25
|
neeq1d |
|
| 27 |
26
|
rabbidva |
|
| 28 |
13
|
simprd |
|
| 29 |
16
|
simprd |
|
| 30 |
|
unfi |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
|
neorian |
|
| 33 |
32
|
bicomi |
|
| 34 |
33
|
con1bii |
|
| 35 |
5
|
ffvelcdmda |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
36 37
|
mndidcl |
|
| 39 |
|
eqid |
|
| 40 |
36 39 37
|
mndlid |
|
| 41 |
35 38 40
|
syl2anc2 |
|
| 42 |
|
oveq12 |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
41 43
|
syl5ibrcom |
|
| 45 |
34 44
|
biimtrid |
|
| 46 |
45
|
necon1ad |
|
| 47 |
46
|
ss2rabdv |
|
| 48 |
|
unrab |
|
| 49 |
47 48
|
sseqtrrdi |
|
| 50 |
31 49
|
ssfid |
|
| 51 |
27 50
|
eqeltrd |
|
| 52 |
1 10 9 2 3 11
|
dsmmelbas |
|
| 53 |
18 51 52
|
mpbir2and |
|