Metamath Proof Explorer


Theorem prdsinvgd2

Description: Negation of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses prdsinvgd2.y
|- Y = ( S Xs_ R )
prdsinvgd2.i
|- ( ph -> I e. W )
prdsinvgd2.s
|- ( ph -> S e. V )
prdsinvgd2.r
|- ( ph -> R : I --> Grp )
prdsinvgd2.b
|- B = ( Base ` Y )
prdsinvgd2.n
|- N = ( invg ` Y )
prdsinvgd2.x
|- ( ph -> X e. B )
prdsinvgd2.j
|- ( ph -> J e. I )
Assertion prdsinvgd2
|- ( ph -> ( ( N ` X ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) )

Proof

Step Hyp Ref Expression
1 prdsinvgd2.y
 |-  Y = ( S Xs_ R )
2 prdsinvgd2.i
 |-  ( ph -> I e. W )
3 prdsinvgd2.s
 |-  ( ph -> S e. V )
4 prdsinvgd2.r
 |-  ( ph -> R : I --> Grp )
5 prdsinvgd2.b
 |-  B = ( Base ` Y )
6 prdsinvgd2.n
 |-  N = ( invg ` Y )
7 prdsinvgd2.x
 |-  ( ph -> X e. B )
8 prdsinvgd2.j
 |-  ( ph -> J e. I )
9 1 2 3 4 5 6 7 prdsinvgd
 |-  ( ph -> ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) )
10 9 fveq1d
 |-  ( ph -> ( ( N ` X ) ` J ) = ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) )
11 2fveq3
 |-  ( x = J -> ( invg ` ( R ` x ) ) = ( invg ` ( R ` J ) ) )
12 fveq2
 |-  ( x = J -> ( X ` x ) = ( X ` J ) )
13 11 12 fveq12d
 |-  ( x = J -> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) )
14 eqid
 |-  ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) )
15 fvex
 |-  ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) e. _V
16 13 14 15 fvmpt
 |-  ( J e. I -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) )
17 8 16 syl
 |-  ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) )
18 10 17 eqtrd
 |-  ( ph -> ( ( N ` X ) ` J ) = ( ( invg ` ( R ` J ) ) ` ( X ` J ) ) )