Metamath Proof Explorer


Theorem prdsvscafval

Description: Scalar multiplication of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsvscaval.t ·˙=Y
prdsvscaval.k K=BaseS
prdsvscaval.s φSV
prdsvscaval.i φIW
prdsvscaval.r φRFnI
prdsvscaval.f φFK
prdsvscaval.g φGB
prdsvscafval.j φJI
Assertion prdsvscafval φF·˙GJ=FRJGJ

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsvscaval.t ·˙=Y
4 prdsvscaval.k K=BaseS
5 prdsvscaval.s φSV
6 prdsvscaval.i φIW
7 prdsvscaval.r φRFnI
8 prdsvscaval.f φFK
9 prdsvscaval.g φGB
10 prdsvscafval.j φJI
11 1 2 3 4 5 6 7 8 9 prdsvscaval φF·˙G=xIFRxGx
12 2fveq3 x=JRx=RJ
13 eqidd x=JF=F
14 fveq2 x=JGx=GJ
15 12 13 14 oveq123d x=JFRxGx=FRJGJ
16 15 adantl φx=JFRxGx=FRJGJ
17 ovexd φFRJGJV
18 11 16 10 17 fvmptd φF·˙GJ=FRJGJ