| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbasmpt.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
prdsbasmpt.b |
|- B = ( Base ` Y ) |
| 3 |
|
prdsvscaval.t |
|- .x. = ( .s ` Y ) |
| 4 |
|
prdsvscaval.k |
|- K = ( Base ` S ) |
| 5 |
|
prdsvscaval.s |
|- ( ph -> S e. V ) |
| 6 |
|
prdsvscaval.i |
|- ( ph -> I e. W ) |
| 7 |
|
prdsvscaval.r |
|- ( ph -> R Fn I ) |
| 8 |
|
prdsvscaval.f |
|- ( ph -> F e. K ) |
| 9 |
|
prdsvscaval.g |
|- ( ph -> G e. B ) |
| 10 |
|
prdsvscafval.j |
|- ( ph -> J e. I ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
prdsvscaval |
|- ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 12 |
|
2fveq3 |
|- ( x = J -> ( .s ` ( R ` x ) ) = ( .s ` ( R ` J ) ) ) |
| 13 |
|
eqidd |
|- ( x = J -> F = F ) |
| 14 |
|
fveq2 |
|- ( x = J -> ( G ` x ) = ( G ` J ) ) |
| 15 |
12 13 14
|
oveq123d |
|- ( x = J -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) = ( F ( .s ` ( R ` J ) ) ( G ` J ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ x = J ) -> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) = ( F ( .s ` ( R ` J ) ) ( G ` J ) ) ) |
| 17 |
|
ovexd |
|- ( ph -> ( F ( .s ` ( R ` J ) ) ( G ` J ) ) e. _V ) |
| 18 |
11 16 10 17
|
fvmptd |
|- ( ph -> ( ( F .x. G ) ` J ) = ( F ( .s ` ( R ` J ) ) ( G ` J ) ) ) |