Metamath Proof Explorer


Theorem prdsbas3

Description: The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses prdsbasmpt2.y
|- Y = ( S Xs_ ( x e. I |-> R ) )
prdsbasmpt2.b
|- B = ( Base ` Y )
prdsbasmpt2.s
|- ( ph -> S e. V )
prdsbasmpt2.i
|- ( ph -> I e. W )
prdsbasmpt2.r
|- ( ph -> A. x e. I R e. X )
prdsbasmpt2.k
|- K = ( Base ` R )
Assertion prdsbas3
|- ( ph -> B = X_ x e. I K )

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y
 |-  Y = ( S Xs_ ( x e. I |-> R ) )
2 prdsbasmpt2.b
 |-  B = ( Base ` Y )
3 prdsbasmpt2.s
 |-  ( ph -> S e. V )
4 prdsbasmpt2.i
 |-  ( ph -> I e. W )
5 prdsbasmpt2.r
 |-  ( ph -> A. x e. I R e. X )
6 prdsbasmpt2.k
 |-  K = ( Base ` R )
7 eqid
 |-  ( x e. I |-> R ) = ( x e. I |-> R )
8 7 fnmpt
 |-  ( A. x e. I R e. X -> ( x e. I |-> R ) Fn I )
9 5 8 syl
 |-  ( ph -> ( x e. I |-> R ) Fn I )
10 1 2 3 4 9 prdsbas2
 |-  ( ph -> B = X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) )
11 nfcv
 |-  F/_ x Base
12 nffvmpt1
 |-  F/_ x ( ( x e. I |-> R ) ` y )
13 11 12 nffv
 |-  F/_ x ( Base ` ( ( x e. I |-> R ) ` y ) )
14 nfcv
 |-  F/_ y ( Base ` ( ( x e. I |-> R ) ` x ) )
15 2fveq3
 |-  ( y = x -> ( Base ` ( ( x e. I |-> R ) ` y ) ) = ( Base ` ( ( x e. I |-> R ) ` x ) ) )
16 13 14 15 cbvixp
 |-  X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) )
17 10 16 eqtrdi
 |-  ( ph -> B = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) )
18 7 fvmpt2
 |-  ( ( x e. I /\ R e. X ) -> ( ( x e. I |-> R ) ` x ) = R )
19 18 fveq2d
 |-  ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = ( Base ` R ) )
20 19 6 eqtr4di
 |-  ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = K )
21 20 ralimiaa
 |-  ( A. x e. I R e. X -> A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K )
22 ixpeq2
 |-  ( A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K )
23 5 21 22 3syl
 |-  ( ph -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K )
24 17 23 eqtrd
 |-  ( ph -> B = X_ x e. I K )