Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbasmpt2.y |
|- Y = ( S Xs_ ( x e. I |-> R ) ) |
2 |
|
prdsbasmpt2.b |
|- B = ( Base ` Y ) |
3 |
|
prdsbasmpt2.s |
|- ( ph -> S e. V ) |
4 |
|
prdsbasmpt2.i |
|- ( ph -> I e. W ) |
5 |
|
prdsbasmpt2.r |
|- ( ph -> A. x e. I R e. X ) |
6 |
|
prdsbasmpt2.k |
|- K = ( Base ` R ) |
7 |
|
eqid |
|- ( x e. I |-> R ) = ( x e. I |-> R ) |
8 |
7
|
fnmpt |
|- ( A. x e. I R e. X -> ( x e. I |-> R ) Fn I ) |
9 |
5 8
|
syl |
|- ( ph -> ( x e. I |-> R ) Fn I ) |
10 |
1 2 3 4 9
|
prdsbas2 |
|- ( ph -> B = X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) ) |
11 |
|
nfcv |
|- F/_ x Base |
12 |
|
nffvmpt1 |
|- F/_ x ( ( x e. I |-> R ) ` y ) |
13 |
11 12
|
nffv |
|- F/_ x ( Base ` ( ( x e. I |-> R ) ` y ) ) |
14 |
|
nfcv |
|- F/_ y ( Base ` ( ( x e. I |-> R ) ` x ) ) |
15 |
|
2fveq3 |
|- ( y = x -> ( Base ` ( ( x e. I |-> R ) ` y ) ) = ( Base ` ( ( x e. I |-> R ) ` x ) ) ) |
16 |
13 14 15
|
cbvixp |
|- X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) |
17 |
10 16
|
eqtrdi |
|- ( ph -> B = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) ) |
18 |
7
|
fvmpt2 |
|- ( ( x e. I /\ R e. X ) -> ( ( x e. I |-> R ) ` x ) = R ) |
19 |
18
|
fveq2d |
|- ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = ( Base ` R ) ) |
20 |
19 6
|
eqtr4di |
|- ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = K ) |
21 |
20
|
ralimiaa |
|- ( A. x e. I R e. X -> A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K ) |
22 |
|
ixpeq2 |
|- ( A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K ) |
23 |
5 21 22
|
3syl |
|- ( ph -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K ) |
24 |
17 23
|
eqtrd |
|- ( ph -> B = X_ x e. I K ) |