Metamath Proof Explorer


Theorem prdsbasmpt2

Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses prdsbasmpt2.y
|- Y = ( S Xs_ ( x e. I |-> R ) )
prdsbasmpt2.b
|- B = ( Base ` Y )
prdsbasmpt2.s
|- ( ph -> S e. V )
prdsbasmpt2.i
|- ( ph -> I e. W )
prdsbasmpt2.r
|- ( ph -> A. x e. I R e. X )
prdsbasmpt2.k
|- K = ( Base ` R )
Assertion prdsbasmpt2
|- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. K ) )

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y
 |-  Y = ( S Xs_ ( x e. I |-> R ) )
2 prdsbasmpt2.b
 |-  B = ( Base ` Y )
3 prdsbasmpt2.s
 |-  ( ph -> S e. V )
4 prdsbasmpt2.i
 |-  ( ph -> I e. W )
5 prdsbasmpt2.r
 |-  ( ph -> A. x e. I R e. X )
6 prdsbasmpt2.k
 |-  K = ( Base ` R )
7 1 2 3 4 5 6 prdsbas3
 |-  ( ph -> B = X_ x e. I K )
8 7 eleq2d
 |-  ( ph -> ( ( x e. I |-> U ) e. B <-> ( x e. I |-> U ) e. X_ x e. I K ) )
9 mptelixpg
 |-  ( I e. W -> ( ( x e. I |-> U ) e. X_ x e. I K <-> A. x e. I U e. K ) )
10 4 9 syl
 |-  ( ph -> ( ( x e. I |-> U ) e. X_ x e. I K <-> A. x e. I U e. K ) )
11 8 10 bitrd
 |-  ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. K ) )