Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015) (Revised by Mario Carneiro, 13-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
prdsbasmpt2.b | |- B = ( Base ` Y ) |
||
prdsbasmpt2.s | |- ( ph -> S e. V ) |
||
prdsbasmpt2.i | |- ( ph -> I e. W ) |
||
prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
||
prdsbasmpt2.k | |- K = ( Base ` R ) |
||
Assertion | prdsbasmpt2 | |- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
2 | prdsbasmpt2.b | |- B = ( Base ` Y ) |
|
3 | prdsbasmpt2.s | |- ( ph -> S e. V ) |
|
4 | prdsbasmpt2.i | |- ( ph -> I e. W ) |
|
5 | prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
|
6 | prdsbasmpt2.k | |- K = ( Base ` R ) |
|
7 | 1 2 3 4 5 6 | prdsbas3 | |- ( ph -> B = X_ x e. I K ) |
8 | 7 | eleq2d | |- ( ph -> ( ( x e. I |-> U ) e. B <-> ( x e. I |-> U ) e. X_ x e. I K ) ) |
9 | mptelixpg | |- ( I e. W -> ( ( x e. I |-> U ) e. X_ x e. I K <-> A. x e. I U e. K ) ) |
|
10 | 4 9 | syl | |- ( ph -> ( ( x e. I |-> U ) e. X_ x e. I K <-> A. x e. I U e. K ) ) |
11 | 8 10 | bitrd | |- ( ph -> ( ( x e. I |-> U ) e. B <-> A. x e. I U e. K ) ) |