| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvferm.a |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 2 |
|
dvferm.b |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
| 3 |
|
dvferm.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 4 |
|
dvferm.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝑋 ) |
| 5 |
|
dvferm.d |
⊢ ( 𝜑 → 𝑈 ∈ dom ( ℝ D 𝐹 ) ) |
| 6 |
|
dvferm.r |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
| 7 |
|
ne0i |
⊢ ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 8 |
|
ndmioo |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 9 |
8
|
necon1ai |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 10 |
3 7 9
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 12 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 13 |
12 3
|
sselid |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 14 |
13
|
rexrd |
⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) |
| 15 |
|
eliooord |
⊢ ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑈 ∧ 𝑈 < 𝐵 ) ) |
| 16 |
3 15
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝑈 ∧ 𝑈 < 𝐵 ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → 𝐴 < 𝑈 ) |
| 18 |
11 14 17
|
xrltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝑈 ) |
| 19 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑈 ) → ( 𝑈 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 20 |
11 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 21 |
|
ssralv |
⊢ ( ( 𝑈 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) → ∀ 𝑦 ∈ ( 𝑈 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) ) |
| 22 |
20 6 21
|
sylc |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑈 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
| 23 |
1 2 3 4 5 22
|
dvferm1 |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ≤ 0 ) |
| 24 |
10
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 25 |
16
|
simprd |
⊢ ( 𝜑 → 𝑈 < 𝐵 ) |
| 26 |
14 24 25
|
xrltled |
⊢ ( 𝜑 → 𝑈 ≤ 𝐵 ) |
| 27 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑈 ≤ 𝐵 ) → ( 𝐴 (,) 𝑈 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 28 |
24 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑈 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 29 |
|
ssralv |
⊢ ( ( 𝐴 (,) 𝑈 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝑈 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) ) |
| 30 |
28 6 29
|
sylc |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝑈 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
| 31 |
1 2 3 4 5 30
|
dvferm2 |
⊢ ( 𝜑 → 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ) |
| 32 |
|
dvfre |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 33 |
1 2 32
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 34 |
33 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ∈ ℝ ) |
| 35 |
|
0re |
⊢ 0 ∈ ℝ |
| 36 |
|
letri3 |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ≤ 0 ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ) ) ) |
| 37 |
34 35 36
|
sylancl |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ≤ 0 ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ) ) ) |
| 38 |
23 31 37
|
mpbir2and |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) |