| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 2 |
1
|
jctr |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ) |
| 3 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 4 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
| 5 |
4
|
dmeqi |
⊢ dom ( ℂ D exp ) = dom exp |
| 6 |
1
|
fdmi |
⊢ dom exp = ℂ |
| 7 |
5 6
|
eqtri |
⊢ dom ( ℂ D exp ) = ℂ |
| 8 |
3 7
|
sseqtrrdi |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ dom ( ℂ D exp ) ) |
| 9 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 10 |
8 9
|
jctil |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D exp ) ) ) |
| 11 |
|
dvres3 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D exp ) ) ) → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( ( ℂ D exp ) ↾ 𝑆 ) ) |
| 12 |
2 10 11
|
syl2anc |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( ( ℂ D exp ) ↾ 𝑆 ) ) |
| 13 |
4
|
reseq1i |
⊢ ( ( ℂ D exp ) ↾ 𝑆 ) = ( exp ↾ 𝑆 ) |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( exp ↾ 𝑆 ) ) |