Metamath Proof Explorer


Theorem dvsef

Description: Derivative of the exponential function on the real or complex numbers. (Contributed by Steve Rodriguez, 12-Nov-2015)

Ref Expression
Assertion dvsef ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( exp ↾ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 eff exp : ℂ ⟶ ℂ
2 1 jctr ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) )
3 recnprss ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ )
4 dvef ( ℂ D exp ) = exp
5 4 dmeqi dom ( ℂ D exp ) = dom exp
6 1 fdmi dom exp = ℂ
7 5 6 eqtri dom ( ℂ D exp ) = ℂ
8 3 7 sseqtrrdi ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ dom ( ℂ D exp ) )
9 ssid ℂ ⊆ ℂ
10 8 9 jctil ( 𝑆 ∈ { ℝ , ℂ } → ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D exp ) ) )
11 dvres3 ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D exp ) ) ) → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( ( ℂ D exp ) ↾ 𝑆 ) )
12 2 10 11 syl2anc ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( ( ℂ D exp ) ↾ 𝑆 ) )
13 4 reseq1i ( ( ℂ D exp ) ↾ 𝑆 ) = ( exp ↾ 𝑆 )
14 12 13 eqtrdi ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( exp ↾ 𝑆 ) )