Step |
Hyp |
Ref |
Expression |
1 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
2 |
1
|
jctr |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ) |
3 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
4 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
5 |
4
|
dmeqi |
⊢ dom ( ℂ D exp ) = dom exp |
6 |
1
|
fdmi |
⊢ dom exp = ℂ |
7 |
5 6
|
eqtri |
⊢ dom ( ℂ D exp ) = ℂ |
8 |
3 7
|
sseqtrrdi |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ dom ( ℂ D exp ) ) |
9 |
|
ssid |
⊢ ℂ ⊆ ℂ |
10 |
8 9
|
jctil |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D exp ) ) ) |
11 |
|
dvres3 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D exp ) ) ) → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( ( ℂ D exp ) ↾ 𝑆 ) ) |
12 |
2 10 11
|
syl2anc |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( ( ℂ D exp ) ↾ 𝑆 ) ) |
13 |
4
|
reseq1i |
⊢ ( ( ℂ D exp ) ↾ 𝑆 ) = ( exp ↾ 𝑆 ) |
14 |
12 13
|
eqtrdi |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( exp ↾ 𝑆 ) ) = ( exp ↾ 𝑆 ) ) |