Step |
Hyp |
Ref |
Expression |
1 |
|
eff |
|- exp : CC --> CC |
2 |
1
|
jctr |
|- ( S e. { RR , CC } -> ( S e. { RR , CC } /\ exp : CC --> CC ) ) |
3 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
4 |
|
dvef |
|- ( CC _D exp ) = exp |
5 |
4
|
dmeqi |
|- dom ( CC _D exp ) = dom exp |
6 |
1
|
fdmi |
|- dom exp = CC |
7 |
5 6
|
eqtri |
|- dom ( CC _D exp ) = CC |
8 |
3 7
|
sseqtrrdi |
|- ( S e. { RR , CC } -> S C_ dom ( CC _D exp ) ) |
9 |
|
ssid |
|- CC C_ CC |
10 |
8 9
|
jctil |
|- ( S e. { RR , CC } -> ( CC C_ CC /\ S C_ dom ( CC _D exp ) ) ) |
11 |
|
dvres3 |
|- ( ( ( S e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D exp ) ) ) -> ( S _D ( exp |` S ) ) = ( ( CC _D exp ) |` S ) ) |
12 |
2 10 11
|
syl2anc |
|- ( S e. { RR , CC } -> ( S _D ( exp |` S ) ) = ( ( CC _D exp ) |` S ) ) |
13 |
4
|
reseq1i |
|- ( ( CC _D exp ) |` S ) = ( exp |` S ) |
14 |
12 13
|
eqtrdi |
|- ( S e. { RR , CC } -> ( S _D ( exp |` S ) ) = ( exp |` S ) ) |