| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eff |  |-  exp : CC --> CC | 
						
							| 2 | 1 | jctr |  |-  ( S e. { RR , CC } -> ( S e. { RR , CC } /\ exp : CC --> CC ) ) | 
						
							| 3 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 4 |  | dvef |  |-  ( CC _D exp ) = exp | 
						
							| 5 | 4 | dmeqi |  |-  dom ( CC _D exp ) = dom exp | 
						
							| 6 | 1 | fdmi |  |-  dom exp = CC | 
						
							| 7 | 5 6 | eqtri |  |-  dom ( CC _D exp ) = CC | 
						
							| 8 | 3 7 | sseqtrrdi |  |-  ( S e. { RR , CC } -> S C_ dom ( CC _D exp ) ) | 
						
							| 9 |  | ssid |  |-  CC C_ CC | 
						
							| 10 | 8 9 | jctil |  |-  ( S e. { RR , CC } -> ( CC C_ CC /\ S C_ dom ( CC _D exp ) ) ) | 
						
							| 11 |  | dvres3 |  |-  ( ( ( S e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D exp ) ) ) -> ( S _D ( exp |` S ) ) = ( ( CC _D exp ) |` S ) ) | 
						
							| 12 | 2 10 11 | syl2anc |  |-  ( S e. { RR , CC } -> ( S _D ( exp |` S ) ) = ( ( CC _D exp ) |` S ) ) | 
						
							| 13 | 4 | reseq1i |  |-  ( ( CC _D exp ) |` S ) = ( exp |` S ) | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( S e. { RR , CC } -> ( S _D ( exp |` S ) ) = ( exp |` S ) ) |