| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expgrowthi.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | expgrowthi.k |  |-  ( ph -> K e. CC ) | 
						
							| 3 |  | expgrowthi.y0 |  |-  ( ph -> C e. CC ) | 
						
							| 4 |  | expgrowthi.yt |  |-  Y = ( t e. S |-> ( C x. ( exp ` ( K x. t ) ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( t = y -> ( K x. t ) = ( K x. y ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( t = y -> ( exp ` ( K x. t ) ) = ( exp ` ( K x. y ) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( t = y -> ( C x. ( exp ` ( K x. t ) ) ) = ( C x. ( exp ` ( K x. y ) ) ) ) | 
						
							| 8 | 7 | cbvmptv |  |-  ( t e. S |-> ( C x. ( exp ` ( K x. t ) ) ) ) = ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) | 
						
							| 9 | 4 8 | eqtri |  |-  Y = ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) | 
						
							| 10 | 9 | oveq2i |  |-  ( S _D Y ) = ( S _D ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) | 
						
							| 11 |  | elpri |  |-  ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) | 
						
							| 12 |  | eleq2 |  |-  ( S = RR -> ( y e. S <-> y e. RR ) ) | 
						
							| 13 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 14 | 12 13 | biimtrdi |  |-  ( S = RR -> ( y e. S -> y e. CC ) ) | 
						
							| 15 |  | eleq2 |  |-  ( S = CC -> ( y e. S <-> y e. CC ) ) | 
						
							| 16 | 15 | biimpd |  |-  ( S = CC -> ( y e. S -> y e. CC ) ) | 
						
							| 17 | 14 16 | jaoi |  |-  ( ( S = RR \/ S = CC ) -> ( y e. S -> y e. CC ) ) | 
						
							| 18 | 1 11 17 | 3syl |  |-  ( ph -> ( y e. S -> y e. CC ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( ph /\ y e. S ) -> y e. CC ) | 
						
							| 20 |  | mulcl |  |-  ( ( K e. CC /\ y e. CC ) -> ( K x. y ) e. CC ) | 
						
							| 21 | 2 20 | sylan |  |-  ( ( ph /\ y e. CC ) -> ( K x. y ) e. CC ) | 
						
							| 22 |  | efcl |  |-  ( ( K x. y ) e. CC -> ( exp ` ( K x. y ) ) e. CC ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ph /\ y e. CC ) -> ( exp ` ( K x. y ) ) e. CC ) | 
						
							| 24 | 19 23 | syldan |  |-  ( ( ph /\ y e. S ) -> ( exp ` ( K x. y ) ) e. CC ) | 
						
							| 25 |  | ovexd |  |-  ( ( ph /\ y e. S ) -> ( K x. ( exp ` ( K x. y ) ) ) e. _V ) | 
						
							| 26 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 27 | 26 | a1i |  |-  ( ph -> CC e. { RR , CC } ) | 
						
							| 28 | 19 21 | syldan |  |-  ( ( ph /\ y e. S ) -> ( K x. y ) e. CC ) | 
						
							| 29 | 2 | adantr |  |-  ( ( ph /\ y e. S ) -> K e. CC ) | 
						
							| 30 |  | efcl |  |-  ( x e. CC -> ( exp ` x ) e. CC ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ x e. CC ) -> ( exp ` x ) e. CC ) | 
						
							| 32 |  | 1cnd |  |-  ( ( ph /\ y e. S ) -> 1 e. CC ) | 
						
							| 33 | 1 | dvmptid |  |-  ( ph -> ( S _D ( y e. S |-> y ) ) = ( y e. S |-> 1 ) ) | 
						
							| 34 | 1 19 32 33 2 | dvmptcmul |  |-  ( ph -> ( S _D ( y e. S |-> ( K x. y ) ) ) = ( y e. S |-> ( K x. 1 ) ) ) | 
						
							| 35 | 2 | mulridd |  |-  ( ph -> ( K x. 1 ) = K ) | 
						
							| 36 | 35 | mpteq2dv |  |-  ( ph -> ( y e. S |-> ( K x. 1 ) ) = ( y e. S |-> K ) ) | 
						
							| 37 | 34 36 | eqtrd |  |-  ( ph -> ( S _D ( y e. S |-> ( K x. y ) ) ) = ( y e. S |-> K ) ) | 
						
							| 38 |  | dvef |  |-  ( CC _D exp ) = exp | 
						
							| 39 |  | eff |  |-  exp : CC --> CC | 
						
							| 40 |  | ffn |  |-  ( exp : CC --> CC -> exp Fn CC ) | 
						
							| 41 | 39 40 | ax-mp |  |-  exp Fn CC | 
						
							| 42 |  | dffn5 |  |-  ( exp Fn CC <-> exp = ( x e. CC |-> ( exp ` x ) ) ) | 
						
							| 43 | 41 42 | mpbi |  |-  exp = ( x e. CC |-> ( exp ` x ) ) | 
						
							| 44 | 43 | oveq2i |  |-  ( CC _D exp ) = ( CC _D ( x e. CC |-> ( exp ` x ) ) ) | 
						
							| 45 | 38 44 43 | 3eqtr3i |  |-  ( CC _D ( x e. CC |-> ( exp ` x ) ) ) = ( x e. CC |-> ( exp ` x ) ) | 
						
							| 46 | 45 | a1i |  |-  ( ph -> ( CC _D ( x e. CC |-> ( exp ` x ) ) ) = ( x e. CC |-> ( exp ` x ) ) ) | 
						
							| 47 |  | fveq2 |  |-  ( x = ( K x. y ) -> ( exp ` x ) = ( exp ` ( K x. y ) ) ) | 
						
							| 48 | 1 27 28 29 31 31 37 46 47 47 | dvmptco |  |-  ( ph -> ( S _D ( y e. S |-> ( exp ` ( K x. y ) ) ) ) = ( y e. S |-> ( ( exp ` ( K x. y ) ) x. K ) ) ) | 
						
							| 49 |  | mulcom |  |-  ( ( ( exp ` ( K x. y ) ) e. CC /\ K e. CC ) -> ( ( exp ` ( K x. y ) ) x. K ) = ( K x. ( exp ` ( K x. y ) ) ) ) | 
						
							| 50 | 24 2 49 | syl2anr |  |-  ( ( ph /\ ( ph /\ y e. S ) ) -> ( ( exp ` ( K x. y ) ) x. K ) = ( K x. ( exp ` ( K x. y ) ) ) ) | 
						
							| 51 | 50 | anabss5 |  |-  ( ( ph /\ y e. S ) -> ( ( exp ` ( K x. y ) ) x. K ) = ( K x. ( exp ` ( K x. y ) ) ) ) | 
						
							| 52 | 51 | mpteq2dva |  |-  ( ph -> ( y e. S |-> ( ( exp ` ( K x. y ) ) x. K ) ) = ( y e. S |-> ( K x. ( exp ` ( K x. y ) ) ) ) ) | 
						
							| 53 | 48 52 | eqtrd |  |-  ( ph -> ( S _D ( y e. S |-> ( exp ` ( K x. y ) ) ) ) = ( y e. S |-> ( K x. ( exp ` ( K x. y ) ) ) ) ) | 
						
							| 54 | 1 24 25 53 3 | dvmptcmul |  |-  ( ph -> ( S _D ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) = ( y e. S |-> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) ) ) | 
						
							| 55 | 3 2 24 | 3anim123i |  |-  ( ( ph /\ ph /\ ( ph /\ y e. S ) ) -> ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) ) | 
						
							| 56 | 55 | 3anidm12 |  |-  ( ( ph /\ ( ph /\ y e. S ) ) -> ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) ) | 
						
							| 57 | 56 | anabss5 |  |-  ( ( ph /\ y e. S ) -> ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) ) | 
						
							| 58 |  | mul12 |  |-  ( ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) -> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) = ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) | 
						
							| 59 | 57 58 | syl |  |-  ( ( ph /\ y e. S ) -> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) = ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) | 
						
							| 60 | 59 | mpteq2dva |  |-  ( ph -> ( y e. S |-> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) | 
						
							| 61 | 54 60 | eqtrd |  |-  ( ph -> ( S _D ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) | 
						
							| 62 | 10 61 | eqtrid |  |-  ( ph -> ( S _D Y ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) | 
						
							| 63 |  | ovexd |  |-  ( ( ph /\ y e. S ) -> ( C x. ( exp ` ( K x. y ) ) ) e. _V ) | 
						
							| 64 |  | fconstmpt |  |-  ( S X. { K } ) = ( y e. S |-> K ) | 
						
							| 65 | 64 | a1i |  |-  ( ph -> ( S X. { K } ) = ( y e. S |-> K ) ) | 
						
							| 66 | 9 | a1i |  |-  ( ph -> Y = ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) | 
						
							| 67 | 1 29 63 65 66 | offval2 |  |-  ( ph -> ( ( S X. { K } ) oF x. Y ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) | 
						
							| 68 | 62 67 | eqtr4d |  |-  ( ph -> ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) |