Step |
Hyp |
Ref |
Expression |
1 |
|
expgrowthi.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
expgrowthi.k |
|- ( ph -> K e. CC ) |
3 |
|
expgrowthi.y0 |
|- ( ph -> C e. CC ) |
4 |
|
expgrowthi.yt |
|- Y = ( t e. S |-> ( C x. ( exp ` ( K x. t ) ) ) ) |
5 |
|
oveq2 |
|- ( t = y -> ( K x. t ) = ( K x. y ) ) |
6 |
5
|
fveq2d |
|- ( t = y -> ( exp ` ( K x. t ) ) = ( exp ` ( K x. y ) ) ) |
7 |
6
|
oveq2d |
|- ( t = y -> ( C x. ( exp ` ( K x. t ) ) ) = ( C x. ( exp ` ( K x. y ) ) ) ) |
8 |
7
|
cbvmptv |
|- ( t e. S |-> ( C x. ( exp ` ( K x. t ) ) ) ) = ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) |
9 |
4 8
|
eqtri |
|- Y = ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) |
10 |
9
|
oveq2i |
|- ( S _D Y ) = ( S _D ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) |
11 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
12 |
|
eleq2 |
|- ( S = RR -> ( y e. S <-> y e. RR ) ) |
13 |
|
recn |
|- ( y e. RR -> y e. CC ) |
14 |
12 13
|
syl6bi |
|- ( S = RR -> ( y e. S -> y e. CC ) ) |
15 |
|
eleq2 |
|- ( S = CC -> ( y e. S <-> y e. CC ) ) |
16 |
15
|
biimpd |
|- ( S = CC -> ( y e. S -> y e. CC ) ) |
17 |
14 16
|
jaoi |
|- ( ( S = RR \/ S = CC ) -> ( y e. S -> y e. CC ) ) |
18 |
1 11 17
|
3syl |
|- ( ph -> ( y e. S -> y e. CC ) ) |
19 |
18
|
imp |
|- ( ( ph /\ y e. S ) -> y e. CC ) |
20 |
|
mulcl |
|- ( ( K e. CC /\ y e. CC ) -> ( K x. y ) e. CC ) |
21 |
2 20
|
sylan |
|- ( ( ph /\ y e. CC ) -> ( K x. y ) e. CC ) |
22 |
|
efcl |
|- ( ( K x. y ) e. CC -> ( exp ` ( K x. y ) ) e. CC ) |
23 |
21 22
|
syl |
|- ( ( ph /\ y e. CC ) -> ( exp ` ( K x. y ) ) e. CC ) |
24 |
19 23
|
syldan |
|- ( ( ph /\ y e. S ) -> ( exp ` ( K x. y ) ) e. CC ) |
25 |
|
ovexd |
|- ( ( ph /\ y e. S ) -> ( K x. ( exp ` ( K x. y ) ) ) e. _V ) |
26 |
|
cnelprrecn |
|- CC e. { RR , CC } |
27 |
26
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
28 |
19 21
|
syldan |
|- ( ( ph /\ y e. S ) -> ( K x. y ) e. CC ) |
29 |
2
|
adantr |
|- ( ( ph /\ y e. S ) -> K e. CC ) |
30 |
|
efcl |
|- ( x e. CC -> ( exp ` x ) e. CC ) |
31 |
30
|
adantl |
|- ( ( ph /\ x e. CC ) -> ( exp ` x ) e. CC ) |
32 |
|
1cnd |
|- ( ( ph /\ y e. S ) -> 1 e. CC ) |
33 |
1
|
dvmptid |
|- ( ph -> ( S _D ( y e. S |-> y ) ) = ( y e. S |-> 1 ) ) |
34 |
1 19 32 33 2
|
dvmptcmul |
|- ( ph -> ( S _D ( y e. S |-> ( K x. y ) ) ) = ( y e. S |-> ( K x. 1 ) ) ) |
35 |
2
|
mulid1d |
|- ( ph -> ( K x. 1 ) = K ) |
36 |
35
|
mpteq2dv |
|- ( ph -> ( y e. S |-> ( K x. 1 ) ) = ( y e. S |-> K ) ) |
37 |
34 36
|
eqtrd |
|- ( ph -> ( S _D ( y e. S |-> ( K x. y ) ) ) = ( y e. S |-> K ) ) |
38 |
|
dvef |
|- ( CC _D exp ) = exp |
39 |
|
eff |
|- exp : CC --> CC |
40 |
|
ffn |
|- ( exp : CC --> CC -> exp Fn CC ) |
41 |
39 40
|
ax-mp |
|- exp Fn CC |
42 |
|
dffn5 |
|- ( exp Fn CC <-> exp = ( x e. CC |-> ( exp ` x ) ) ) |
43 |
41 42
|
mpbi |
|- exp = ( x e. CC |-> ( exp ` x ) ) |
44 |
43
|
oveq2i |
|- ( CC _D exp ) = ( CC _D ( x e. CC |-> ( exp ` x ) ) ) |
45 |
38 44 43
|
3eqtr3i |
|- ( CC _D ( x e. CC |-> ( exp ` x ) ) ) = ( x e. CC |-> ( exp ` x ) ) |
46 |
45
|
a1i |
|- ( ph -> ( CC _D ( x e. CC |-> ( exp ` x ) ) ) = ( x e. CC |-> ( exp ` x ) ) ) |
47 |
|
fveq2 |
|- ( x = ( K x. y ) -> ( exp ` x ) = ( exp ` ( K x. y ) ) ) |
48 |
1 27 28 29 31 31 37 46 47 47
|
dvmptco |
|- ( ph -> ( S _D ( y e. S |-> ( exp ` ( K x. y ) ) ) ) = ( y e. S |-> ( ( exp ` ( K x. y ) ) x. K ) ) ) |
49 |
|
mulcom |
|- ( ( ( exp ` ( K x. y ) ) e. CC /\ K e. CC ) -> ( ( exp ` ( K x. y ) ) x. K ) = ( K x. ( exp ` ( K x. y ) ) ) ) |
50 |
24 2 49
|
syl2anr |
|- ( ( ph /\ ( ph /\ y e. S ) ) -> ( ( exp ` ( K x. y ) ) x. K ) = ( K x. ( exp ` ( K x. y ) ) ) ) |
51 |
50
|
anabss5 |
|- ( ( ph /\ y e. S ) -> ( ( exp ` ( K x. y ) ) x. K ) = ( K x. ( exp ` ( K x. y ) ) ) ) |
52 |
51
|
mpteq2dva |
|- ( ph -> ( y e. S |-> ( ( exp ` ( K x. y ) ) x. K ) ) = ( y e. S |-> ( K x. ( exp ` ( K x. y ) ) ) ) ) |
53 |
48 52
|
eqtrd |
|- ( ph -> ( S _D ( y e. S |-> ( exp ` ( K x. y ) ) ) ) = ( y e. S |-> ( K x. ( exp ` ( K x. y ) ) ) ) ) |
54 |
1 24 25 53 3
|
dvmptcmul |
|- ( ph -> ( S _D ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) = ( y e. S |-> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) ) ) |
55 |
3 2 24
|
3anim123i |
|- ( ( ph /\ ph /\ ( ph /\ y e. S ) ) -> ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) ) |
56 |
55
|
3anidm12 |
|- ( ( ph /\ ( ph /\ y e. S ) ) -> ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) ) |
57 |
56
|
anabss5 |
|- ( ( ph /\ y e. S ) -> ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) ) |
58 |
|
mul12 |
|- ( ( C e. CC /\ K e. CC /\ ( exp ` ( K x. y ) ) e. CC ) -> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) = ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) |
59 |
57 58
|
syl |
|- ( ( ph /\ y e. S ) -> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) = ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) |
60 |
59
|
mpteq2dva |
|- ( ph -> ( y e. S |-> ( C x. ( K x. ( exp ` ( K x. y ) ) ) ) ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) |
61 |
54 60
|
eqtrd |
|- ( ph -> ( S _D ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) |
62 |
10 61
|
syl5eq |
|- ( ph -> ( S _D Y ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) |
63 |
|
ovexd |
|- ( ( ph /\ y e. S ) -> ( C x. ( exp ` ( K x. y ) ) ) e. _V ) |
64 |
|
fconstmpt |
|- ( S X. { K } ) = ( y e. S |-> K ) |
65 |
64
|
a1i |
|- ( ph -> ( S X. { K } ) = ( y e. S |-> K ) ) |
66 |
9
|
a1i |
|- ( ph -> Y = ( y e. S |-> ( C x. ( exp ` ( K x. y ) ) ) ) ) |
67 |
1 29 63 65 66
|
offval2 |
|- ( ph -> ( ( S X. { K } ) oF x. Y ) = ( y e. S |-> ( K x. ( C x. ( exp ` ( K x. y ) ) ) ) ) ) |
68 |
62 67
|
eqtr4d |
|- ( ph -> ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) |