Description: Exponential growth and decay model. The derivative of a functiony of variablet equals a constantk timesy itself, iffy equals some constantC times the exponential ofkt. This theorem and expgrowthi illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.
Section 6.3 of Strang p. 242 callsy' =ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as theMalthusian growth model or exponential law, andC,k, andt correspond to initial population size, growth rate, and time respectively ( https://en.wikipedia.org/wiki/Malthusian_growth_model ); and in finance, the model appears in a similar role incontinuous compounding withC as the initial amount of money. Inexponential decay models, k is often expressed as the negative of a positive constant λ.
Herey' is given as ( SD Y ) , C_ as c , andky as ( ( S X. { K } ) oF x. Y ) . ( S X. { K } ) is the constant function that maps any real or complex input tok and oF x. is multiplication as a function operation.
The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of LarsonHostetlerEdwards p. 375 (which notes "C is theinitial value ofy, andk is theproportionality constant.Exponential growth occurs whenk > 0, andexponential decay occurs whenk < 0."); its proof here closely follows the proof ofy' =y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case .
Statements for this and expgrowthi formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expgrowth.s | |- ( ph -> S e. { RR , CC } ) |
|
expgrowth.k | |- ( ph -> K e. CC ) |
||
expgrowth.y | |- ( ph -> Y : S --> CC ) |
||
expgrowth.dy | |- ( ph -> dom ( S _D Y ) = S ) |
||
Assertion | expgrowth | |- ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> E. c e. CC Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expgrowth.s | |- ( ph -> S e. { RR , CC } ) |
|
2 | expgrowth.k | |- ( ph -> K e. CC ) |
|
3 | expgrowth.y | |- ( ph -> Y : S --> CC ) |
|
4 | expgrowth.dy | |- ( ph -> dom ( S _D Y ) = S ) |
|
5 | cnelprrecn | |- CC e. { RR , CC } |
|
6 | 5 | a1i | |- ( ph -> CC e. { RR , CC } ) |
7 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
8 | 1 7 | syl | |- ( ph -> S C_ CC ) |
9 | 8 | sseld | |- ( ph -> ( u e. S -> u e. CC ) ) |
10 | mulcl | |- ( ( K e. CC /\ u e. CC ) -> ( K x. u ) e. CC ) |
|
11 | 2 9 10 | syl6an | |- ( ph -> ( u e. S -> ( K x. u ) e. CC ) ) |
12 | 11 | imp | |- ( ( ph /\ u e. S ) -> ( K x. u ) e. CC ) |
13 | 12 | negcld | |- ( ( ph /\ u e. S ) -> -u ( K x. u ) e. CC ) |
14 | 2 | negcld | |- ( ph -> -u K e. CC ) |
15 | 14 | adantr | |- ( ( ph /\ u e. S ) -> -u K e. CC ) |
16 | efcl | |- ( y e. CC -> ( exp ` y ) e. CC ) |
|
17 | 16 | adantl | |- ( ( ph /\ y e. CC ) -> ( exp ` y ) e. CC ) |
18 | 2 | adantr | |- ( ( ph /\ u e. S ) -> K e. CC ) |
19 | 9 | imp | |- ( ( ph /\ u e. S ) -> u e. CC ) |
20 | ax-1cn | |- 1 e. CC |
|
21 | 20 | a1i | |- ( ( ph /\ u e. S ) -> 1 e. CC ) |
22 | 1 | dvmptid | |- ( ph -> ( S _D ( u e. S |-> u ) ) = ( u e. S |-> 1 ) ) |
23 | 1 19 21 22 2 | dvmptcmul | |- ( ph -> ( S _D ( u e. S |-> ( K x. u ) ) ) = ( u e. S |-> ( K x. 1 ) ) ) |
24 | 2 | mulid1d | |- ( ph -> ( K x. 1 ) = K ) |
25 | 24 | mpteq2dv | |- ( ph -> ( u e. S |-> ( K x. 1 ) ) = ( u e. S |-> K ) ) |
26 | 23 25 | eqtrd | |- ( ph -> ( S _D ( u e. S |-> ( K x. u ) ) ) = ( u e. S |-> K ) ) |
27 | 1 12 18 26 | dvmptneg | |- ( ph -> ( S _D ( u e. S |-> -u ( K x. u ) ) ) = ( u e. S |-> -u K ) ) |
28 | dvef | |- ( CC _D exp ) = exp |
|
29 | eff | |- exp : CC --> CC |
|
30 | ffn | |- ( exp : CC --> CC -> exp Fn CC ) |
|
31 | 29 30 | ax-mp | |- exp Fn CC |
32 | dffn5 | |- ( exp Fn CC <-> exp = ( y e. CC |-> ( exp ` y ) ) ) |
|
33 | 31 32 | mpbi | |- exp = ( y e. CC |-> ( exp ` y ) ) |
34 | 33 | oveq2i | |- ( CC _D exp ) = ( CC _D ( y e. CC |-> ( exp ` y ) ) ) |
35 | 28 34 33 | 3eqtr3i | |- ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) |
36 | 35 | a1i | |- ( ph -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) |
37 | fveq2 | |- ( y = -u ( K x. u ) -> ( exp ` y ) = ( exp ` -u ( K x. u ) ) ) |
|
38 | 1 6 13 15 17 17 27 36 37 37 | dvmptco | |- ( ph -> ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) |
39 | 38 | oveq2d | |- ( ph -> ( Y oF x. ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) |
40 | efcl | |- ( -u ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) e. CC ) |
|
41 | 13 40 | syl | |- ( ( ph /\ u e. S ) -> ( exp ` -u ( K x. u ) ) e. CC ) |
42 | 41 15 | mulcld | |- ( ( ph /\ u e. S ) -> ( ( exp ` -u ( K x. u ) ) x. -u K ) e. CC ) |
43 | 42 | fmpttd | |- ( ph -> ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) : S --> CC ) |
44 | 38 | feq1d | |- ( ph -> ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC <-> ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) : S --> CC ) ) |
45 | 43 44 | mpbird | |- ( ph -> ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC ) |
46 | mulcom | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
|
47 | 46 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) |
48 | 1 3 45 47 | caofcom | |- ( ph -> ( Y oF x. ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) |
49 | 39 48 | eqtr3d | |- ( ph -> ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) = ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) |
50 | 49 | oveq2d | |- ( ph -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) ) |
51 | fconst6g | |- ( -u K e. CC -> ( S X. { -u K } ) : S --> CC ) |
|
52 | 14 51 | syl | |- ( ph -> ( S X. { -u K } ) : S --> CC ) |
53 | 41 | fmpttd | |- ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> CC ) |
54 | 1 52 53 47 | caofcom | |- ( ph -> ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( u e. S |-> ( exp ` -u ( K x. u ) ) ) oF x. ( S X. { -u K } ) ) ) |
55 | eqidd | |- ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) = ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) |
|
56 | fconstmpt | |- ( S X. { -u K } ) = ( u e. S |-> -u K ) |
|
57 | 56 | a1i | |- ( ph -> ( S X. { -u K } ) = ( u e. S |-> -u K ) ) |
58 | 1 41 15 55 57 | offval2 | |- ( ph -> ( ( u e. S |-> ( exp ` -u ( K x. u ) ) ) oF x. ( S X. { -u K } ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) |
59 | 54 58 | eqtrd | |- ( ph -> ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) |
60 | 59 | oveq2d | |- ( ph -> ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) |
61 | 60 | oveq2d | |- ( ph -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) ) |
62 | 38 | dmeqd | |- ( ph -> dom ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = dom ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) |
63 | eqid | |- ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) |
|
64 | 63 42 | dmmptd | |- ( ph -> dom ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) = S ) |
65 | 62 64 | eqtrd | |- ( ph -> dom ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = S ) |
66 | 1 3 53 4 65 | dvmulf | |- ( ph -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) ) |
67 | 50 61 66 | 3eqtr4rd | |- ( ph -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
68 | ofmul12 | |- ( ( ( S e. { RR , CC } /\ Y : S --> CC ) /\ ( ( S X. { -u K } ) : S --> CC /\ ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> CC ) ) -> ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
|
69 | 1 3 52 53 68 | syl22anc | |- ( ph -> ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
70 | 69 | oveq2d | |- ( ph -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
71 | 67 70 | eqtrd | |- ( ph -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
72 | oveq1 | |- ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) -> ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) |
|
73 | 72 | oveq1d | |- ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
74 | 71 73 | sylan9eq | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
75 | mulass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
|
76 | 75 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
77 | 1 52 3 53 76 | caofass | |- ( ph -> ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
78 | 77 | oveq2d | |- ( ph -> ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
79 | 78 | eqeq2d | |- ( ph -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) ) |
80 | 79 | adantr | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) ) |
81 | 74 80 | mpbird | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
82 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
83 | 82 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
84 | fconst6g | |- ( K e. CC -> ( S X. { K } ) : S --> CC ) |
|
85 | 2 84 | syl | |- ( ph -> ( S X. { K } ) : S --> CC ) |
86 | inidm | |- ( S i^i S ) = S |
|
87 | 83 85 3 1 1 86 | off | |- ( ph -> ( ( S X. { K } ) oF x. Y ) : S --> CC ) |
88 | 83 52 3 1 1 86 | off | |- ( ph -> ( ( S X. { -u K } ) oF x. Y ) : S --> CC ) |
89 | adddir | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
|
90 | 89 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
91 | 1 53 87 88 90 | caofdir | |- ( ph -> ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
92 | 91 | eqeq2d | |- ( ph -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
93 | 92 | adantr | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) |
94 | 81 93 | mpbird | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) |
95 | ofnegsub | |- ( ( S e. { RR , CC } /\ ( ( S X. { K } ) oF x. Y ) : S --> CC /\ ( ( S X. { K } ) oF x. Y ) : S --> CC ) -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) ) |
|
96 | 1 87 87 95 | syl3anc | |- ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) ) |
97 | neg1cn | |- -u 1 e. CC |
|
98 | 97 | fconst6 | |- ( S X. { -u 1 } ) : S --> CC |
99 | 98 | a1i | |- ( ph -> ( S X. { -u 1 } ) : S --> CC ) |
100 | 1 99 85 3 76 | caofass | |- ( ph -> ( ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) oF x. Y ) = ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) |
101 | 97 | a1i | |- ( ph -> -u 1 e. CC ) |
102 | 1 101 2 | ofc12 | |- ( ph -> ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) = ( S X. { ( -u 1 x. K ) } ) ) |
103 | 2 | mulm1d | |- ( ph -> ( -u 1 x. K ) = -u K ) |
104 | 103 | sneqd | |- ( ph -> { ( -u 1 x. K ) } = { -u K } ) |
105 | 104 | xpeq2d | |- ( ph -> ( S X. { ( -u 1 x. K ) } ) = ( S X. { -u K } ) ) |
106 | 102 105 | eqtrd | |- ( ph -> ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) = ( S X. { -u K } ) ) |
107 | 106 | oveq1d | |- ( ph -> ( ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) oF x. Y ) = ( ( S X. { -u K } ) oF x. Y ) ) |
108 | 100 107 | eqtr3d | |- ( ph -> ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) = ( ( S X. { -u K } ) oF x. Y ) ) |
109 | 108 | oveq2d | |- ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) ) |
110 | ofsubid | |- ( ( S e. { RR , CC } /\ ( ( S X. { K } ) oF x. Y ) : S --> CC ) -> ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) = ( S X. { 0 } ) ) |
|
111 | 1 87 110 | syl2anc | |- ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) = ( S X. { 0 } ) ) |
112 | 96 109 111 | 3eqtr3d | |- ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) = ( S X. { 0 } ) ) |
113 | 112 | oveq1d | |- ( ph -> ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) |
114 | 113 | eqeq2d | |- ( ph -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
115 | 114 | adantr | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
116 | 94 115 | mpbid | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) |
117 | 0cnd | |- ( ph -> 0 e. CC ) |
|
118 | mul02 | |- ( x e. CC -> ( 0 x. x ) = 0 ) |
|
119 | 118 | adantl | |- ( ( ph /\ x e. CC ) -> ( 0 x. x ) = 0 ) |
120 | 1 53 117 117 119 | caofid2 | |- ( ph -> ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { 0 } ) ) |
121 | 120 | adantr | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { 0 } ) ) |
122 | 116 121 | eqtrd | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( S X. { 0 } ) ) |
123 | 1 | adantr | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> S e. { RR , CC } ) |
124 | 83 3 53 1 1 86 | off | |- ( ph -> ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC ) |
125 | 124 | adantr | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC ) |
126 | 122 | dmeqd | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> dom ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = dom ( S X. { 0 } ) ) |
127 | 0cn | |- 0 e. CC |
|
128 | 127 | fconst6 | |- ( S X. { 0 } ) : S --> CC |
129 | 128 | fdmi | |- dom ( S X. { 0 } ) = S |
130 | 126 129 | eqtrdi | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> dom ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = S ) |
131 | 123 125 130 | dvconstbi | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( S X. { 0 } ) <-> E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) ) ) |
132 | 122 131 | mpbid | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) ) |
133 | oveq1 | |- ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) |
|
134 | efne0 | |- ( -u ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) =/= 0 ) |
|
135 | eldifsn | |- ( ( exp ` -u ( K x. u ) ) e. ( CC \ { 0 } ) <-> ( ( exp ` -u ( K x. u ) ) e. CC /\ ( exp ` -u ( K x. u ) ) =/= 0 ) ) |
|
136 | 40 134 135 | sylanbrc | |- ( -u ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) e. ( CC \ { 0 } ) ) |
137 | 13 136 | syl | |- ( ( ph /\ u e. S ) -> ( exp ` -u ( K x. u ) ) e. ( CC \ { 0 } ) ) |
138 | 137 | fmpttd | |- ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> ( CC \ { 0 } ) ) |
139 | ofdivcan4 | |- ( ( S e. { RR , CC } /\ Y : S --> CC /\ ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> ( CC \ { 0 } ) ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = Y ) |
|
140 | 1 3 138 139 | syl3anc | |- ( ph -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = Y ) |
141 | 140 | eqeq1d | |- ( ph -> ( ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
142 | 133 141 | syl5ib | |- ( ph -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
143 | 142 | adantr | |- ( ( ph /\ x e. CC ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) |
144 | vex | |- x e. _V |
|
145 | 144 | a1i | |- ( ( ph /\ u e. S ) -> x e. _V ) |
146 | ovexd | |- ( ( ph /\ u e. S ) -> ( 1 / ( exp ` ( K x. u ) ) ) e. _V ) |
|
147 | fconstmpt | |- ( S X. { x } ) = ( u e. S |-> x ) |
|
148 | 147 | a1i | |- ( ph -> ( S X. { x } ) = ( u e. S |-> x ) ) |
149 | efneg | |- ( ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) = ( 1 / ( exp ` ( K x. u ) ) ) ) |
|
150 | 12 149 | syl | |- ( ( ph /\ u e. S ) -> ( exp ` -u ( K x. u ) ) = ( 1 / ( exp ` ( K x. u ) ) ) ) |
151 | 150 | mpteq2dva | |- ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) = ( u e. S |-> ( 1 / ( exp ` ( K x. u ) ) ) ) ) |
152 | 1 145 146 148 151 | offval2 | |- ( ph -> ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) ) ) |
153 | 152 | adantr | |- ( ( ph /\ x e. CC ) -> ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) ) ) |
154 | efcl | |- ( ( K x. u ) e. CC -> ( exp ` ( K x. u ) ) e. CC ) |
|
155 | efne0 | |- ( ( K x. u ) e. CC -> ( exp ` ( K x. u ) ) =/= 0 ) |
|
156 | 154 155 | jca | |- ( ( K x. u ) e. CC -> ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) |
157 | 12 156 | syl | |- ( ( ph /\ u e. S ) -> ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) |
158 | ax-1ne0 | |- 1 =/= 0 |
|
159 | 20 158 | pm3.2i | |- ( 1 e. CC /\ 1 =/= 0 ) |
160 | divdiv2 | |- ( ( x e. CC /\ ( 1 e. CC /\ 1 =/= 0 ) /\ ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) ) |
|
161 | 159 160 | mp3an2 | |- ( ( x e. CC /\ ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) ) |
162 | 157 161 | sylan2 | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) ) |
163 | 12 154 | syl | |- ( ( ph /\ u e. S ) -> ( exp ` ( K x. u ) ) e. CC ) |
164 | mulcl | |- ( ( x e. CC /\ ( exp ` ( K x. u ) ) e. CC ) -> ( x x. ( exp ` ( K x. u ) ) ) e. CC ) |
|
165 | 163 164 | sylan2 | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( x x. ( exp ` ( K x. u ) ) ) e. CC ) |
166 | 165 | div1d | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) = ( x x. ( exp ` ( K x. u ) ) ) ) |
167 | 162 166 | eqtrd | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( x x. ( exp ` ( K x. u ) ) ) ) |
168 | 167 | ancoms | |- ( ( ( ph /\ u e. S ) /\ x e. CC ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( x x. ( exp ` ( K x. u ) ) ) ) |
169 | 168 | an32s | |- ( ( ( ph /\ x e. CC ) /\ u e. S ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( x x. ( exp ` ( K x. u ) ) ) ) |
170 | 169 | mpteq2dva | |- ( ( ph /\ x e. CC ) -> ( u e. S |-> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) ) = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) |
171 | 153 170 | eqtrd | |- ( ( ph /\ x e. CC ) -> ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) |
172 | 171 | eqeq2d | |- ( ( ph /\ x e. CC ) -> ( Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
173 | 143 172 | sylibd | |- ( ( ph /\ x e. CC ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
174 | 173 | reximdva | |- ( ph -> ( E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
175 | 174 | adantr | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
176 | 132 175 | mpd | |- ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) |
177 | 176 | ex | |- ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
178 | 1 | adantr | |- ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> S e. { RR , CC } ) |
179 | 2 | adantr | |- ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> K e. CC ) |
180 | simprl | |- ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> x e. CC ) |
|
181 | eqid | |- ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) |
|
182 | 178 179 180 181 | expgrowthi | |- ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
183 | 182 | 3impb | |- ( ( ph /\ x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) -> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
184 | oveq2 | |- ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( S _D Y ) = ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
|
185 | oveq2 | |- ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( ( S X. { K } ) oF x. Y ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
|
186 | 184 185 | eqeq12d | |- ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) ) |
187 | 186 | 3ad2ant3 | |- ( ( ph /\ x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) ) |
188 | 183 187 | mpbird | |- ( ( ph /\ x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) -> ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) |
189 | 188 | rexlimdv3a | |- ( ph -> ( E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) ) |
190 | 177 189 | impbid | |- ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) |
191 | oveq2 | |- ( u = t -> ( K x. u ) = ( K x. t ) ) |
|
192 | 191 | fveq2d | |- ( u = t -> ( exp ` ( K x. u ) ) = ( exp ` ( K x. t ) ) ) |
193 | 192 | oveq2d | |- ( u = t -> ( x x. ( exp ` ( K x. u ) ) ) = ( x x. ( exp ` ( K x. t ) ) ) ) |
194 | 193 | cbvmptv | |- ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) = ( t e. S |-> ( x x. ( exp ` ( K x. t ) ) ) ) |
195 | oveq1 | |- ( x = c -> ( x x. ( exp ` ( K x. t ) ) ) = ( c x. ( exp ` ( K x. t ) ) ) ) |
|
196 | 195 | mpteq2dv | |- ( x = c -> ( t e. S |-> ( x x. ( exp ` ( K x. t ) ) ) ) = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) |
197 | 194 196 | syl5eq | |- ( x = c -> ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) |
198 | 197 | eqeq2d | |- ( x = c -> ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) <-> Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) ) |
199 | 198 | cbvrexvw | |- ( E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) <-> E. c e. CC Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) |
200 | 190 199 | bitrdi | |- ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> E. c e. CC Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) ) |