Description: Exponential growth and decay model. The derivative of a functiony of variablet equals a constantk timesy itself, iffy equals some constantC times the exponential ofkt. This theorem and expgrowthi illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.
Section 6.3 of Strang p. 242 callsy' =ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as theMalthusian growth model or exponential law, andC,k, andt correspond to initial population size, growth rate, and time respectively ( https://en.wikipedia.org/wiki/Malthusian_growth_model ); and in finance, the model appears in a similar role incontinuous compounding withC as the initial amount of money. Inexponential decay models, k is often expressed as the negative of a positive constant λ.
Herey' is given as ( SD Y ) , C_ as c , andky as ( ( S X. { K } ) oF x. Y ) . ( S X. { K } ) is the constant function that maps any real or complex input tok and oF x. is multiplication as a function operation.
The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of LarsonHostetlerEdwards p. 375 (which notes "C is theinitial value ofy, andk is theproportionality constant.Exponential growth occurs whenk > 0, andexponential decay occurs whenk < 0."); its proof here closely follows the proof ofy' =y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case .
Statements for this and expgrowthi formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expgrowth.s | |- ( ph -> S e. { RR , CC } ) | |
| expgrowth.k | |- ( ph -> K e. CC ) | ||
| expgrowth.y | |- ( ph -> Y : S --> CC ) | ||
| expgrowth.dy | |- ( ph -> dom ( S _D Y ) = S ) | ||
| Assertion | expgrowth | |- ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> E. c e. CC Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | expgrowth.s |  |-  ( ph -> S e. { RR , CC } ) | |
| 2 | expgrowth.k | |- ( ph -> K e. CC ) | |
| 3 | expgrowth.y | |- ( ph -> Y : S --> CC ) | |
| 4 | expgrowth.dy | |- ( ph -> dom ( S _D Y ) = S ) | |
| 5 | cnelprrecn |  |-  CC e. { RR , CC } | |
| 6 | 5 | a1i |  |-  ( ph -> CC e. { RR , CC } ) | 
| 7 | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | |
| 8 | 1 7 | syl | |- ( ph -> S C_ CC ) | 
| 9 | 8 | sseld | |- ( ph -> ( u e. S -> u e. CC ) ) | 
| 10 | mulcl | |- ( ( K e. CC /\ u e. CC ) -> ( K x. u ) e. CC ) | |
| 11 | 2 9 10 | syl6an | |- ( ph -> ( u e. S -> ( K x. u ) e. CC ) ) | 
| 12 | 11 | imp | |- ( ( ph /\ u e. S ) -> ( K x. u ) e. CC ) | 
| 13 | 12 | negcld | |- ( ( ph /\ u e. S ) -> -u ( K x. u ) e. CC ) | 
| 14 | 2 | negcld | |- ( ph -> -u K e. CC ) | 
| 15 | 14 | adantr | |- ( ( ph /\ u e. S ) -> -u K e. CC ) | 
| 16 | efcl | |- ( y e. CC -> ( exp ` y ) e. CC ) | |
| 17 | 16 | adantl | |- ( ( ph /\ y e. CC ) -> ( exp ` y ) e. CC ) | 
| 18 | 2 | adantr | |- ( ( ph /\ u e. S ) -> K e. CC ) | 
| 19 | 9 | imp | |- ( ( ph /\ u e. S ) -> u e. CC ) | 
| 20 | ax-1cn | |- 1 e. CC | |
| 21 | 20 | a1i | |- ( ( ph /\ u e. S ) -> 1 e. CC ) | 
| 22 | 1 | dvmptid | |- ( ph -> ( S _D ( u e. S |-> u ) ) = ( u e. S |-> 1 ) ) | 
| 23 | 1 19 21 22 2 | dvmptcmul | |- ( ph -> ( S _D ( u e. S |-> ( K x. u ) ) ) = ( u e. S |-> ( K x. 1 ) ) ) | 
| 24 | 2 | mulridd | |- ( ph -> ( K x. 1 ) = K ) | 
| 25 | 24 | mpteq2dv | |- ( ph -> ( u e. S |-> ( K x. 1 ) ) = ( u e. S |-> K ) ) | 
| 26 | 23 25 | eqtrd | |- ( ph -> ( S _D ( u e. S |-> ( K x. u ) ) ) = ( u e. S |-> K ) ) | 
| 27 | 1 12 18 26 | dvmptneg | |- ( ph -> ( S _D ( u e. S |-> -u ( K x. u ) ) ) = ( u e. S |-> -u K ) ) | 
| 28 | dvef | |- ( CC _D exp ) = exp | |
| 29 | eff | |- exp : CC --> CC | |
| 30 | ffn | |- ( exp : CC --> CC -> exp Fn CC ) | |
| 31 | 29 30 | ax-mp | |- exp Fn CC | 
| 32 | dffn5 | |- ( exp Fn CC <-> exp = ( y e. CC |-> ( exp ` y ) ) ) | |
| 33 | 31 32 | mpbi | |- exp = ( y e. CC |-> ( exp ` y ) ) | 
| 34 | 33 | oveq2i | |- ( CC _D exp ) = ( CC _D ( y e. CC |-> ( exp ` y ) ) ) | 
| 35 | 28 34 33 | 3eqtr3i | |- ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) | 
| 36 | 35 | a1i | |- ( ph -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) | 
| 37 | fveq2 | |- ( y = -u ( K x. u ) -> ( exp ` y ) = ( exp ` -u ( K x. u ) ) ) | |
| 38 | 1 6 13 15 17 17 27 36 37 37 | dvmptco | |- ( ph -> ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) | 
| 39 | 38 | oveq2d | |- ( ph -> ( Y oF x. ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) | 
| 40 | efcl | |- ( -u ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) e. CC ) | |
| 41 | 13 40 | syl | |- ( ( ph /\ u e. S ) -> ( exp ` -u ( K x. u ) ) e. CC ) | 
| 42 | 41 15 | mulcld | |- ( ( ph /\ u e. S ) -> ( ( exp ` -u ( K x. u ) ) x. -u K ) e. CC ) | 
| 43 | 42 | fmpttd | |- ( ph -> ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) : S --> CC ) | 
| 44 | 38 | feq1d | |- ( ph -> ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC <-> ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) : S --> CC ) ) | 
| 45 | 43 44 | mpbird | |- ( ph -> ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC ) | 
| 46 | mulcom | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) | |
| 47 | 46 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) | 
| 48 | 1 3 45 47 | caofcom | |- ( ph -> ( Y oF x. ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) | 
| 49 | 39 48 | eqtr3d | |- ( ph -> ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) = ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) | 
| 50 | 49 | oveq2d | |- ( ph -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) ) | 
| 51 | fconst6g |  |-  ( -u K e. CC -> ( S X. { -u K } ) : S --> CC ) | |
| 52 | 14 51 | syl |  |-  ( ph -> ( S X. { -u K } ) : S --> CC ) | 
| 53 | 41 | fmpttd | |- ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> CC ) | 
| 54 | 1 52 53 47 | caofcom |  |-  ( ph -> ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( u e. S |-> ( exp ` -u ( K x. u ) ) ) oF x. ( S X. { -u K } ) ) ) | 
| 55 | eqidd | |- ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) = ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) | |
| 56 | fconstmpt |  |-  ( S X. { -u K } ) = ( u e. S |-> -u K ) | |
| 57 | 56 | a1i |  |-  ( ph -> ( S X. { -u K } ) = ( u e. S |-> -u K ) ) | 
| 58 | 1 41 15 55 57 | offval2 |  |-  ( ph -> ( ( u e. S |-> ( exp ` -u ( K x. u ) ) ) oF x. ( S X. { -u K } ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) | 
| 59 | 54 58 | eqtrd |  |-  ( ph -> ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) | 
| 60 | 59 | oveq2d |  |-  ( ph -> ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) | 
| 61 | 60 | oveq2d |  |-  ( ph -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) ) ) | 
| 62 | 38 | dmeqd | |- ( ph -> dom ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = dom ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) ) | 
| 63 | eqid | |- ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) = ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) | |
| 64 | 63 42 | dmmptd | |- ( ph -> dom ( u e. S |-> ( ( exp ` -u ( K x. u ) ) x. -u K ) ) = S ) | 
| 65 | 62 64 | eqtrd | |- ( ph -> dom ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = S ) | 
| 66 | 1 3 53 4 65 | dvmulf | |- ( ph -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S _D ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF x. Y ) ) ) | 
| 67 | 50 61 66 | 3eqtr4rd |  |-  ( ph -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 68 | ofmul12 |  |-  ( ( ( S e. { RR , CC } /\ Y : S --> CC ) /\ ( ( S X. { -u K } ) : S --> CC /\ ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> CC ) ) -> ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | |
| 69 | 1 3 52 53 68 | syl22anc |  |-  ( ph -> ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 70 | 69 | oveq2d |  |-  ( ph -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( Y oF x. ( ( S X. { -u K } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 71 | 67 70 | eqtrd |  |-  ( ph -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 72 | oveq1 |  |-  ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) -> ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) | |
| 73 | 72 | oveq1d |  |-  ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) -> ( ( ( S _D Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 74 | 71 73 | sylan9eq |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 75 | mulass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | |
| 76 | 75 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | 
| 77 | 1 52 3 53 76 | caofass |  |-  ( ph -> ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 78 | 77 | oveq2d |  |-  ( ph -> ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 79 | 78 | eqeq2d |  |-  ( ph -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) ) | 
| 80 | 79 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( S X. { -u K } ) oF x. ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) ) | 
| 81 | 74 80 | mpbird |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 82 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | |
| 83 | 82 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) | 
| 84 | fconst6g |  |-  ( K e. CC -> ( S X. { K } ) : S --> CC ) | |
| 85 | 2 84 | syl |  |-  ( ph -> ( S X. { K } ) : S --> CC ) | 
| 86 | inidm | |- ( S i^i S ) = S | |
| 87 | 83 85 3 1 1 86 | off |  |-  ( ph -> ( ( S X. { K } ) oF x. Y ) : S --> CC ) | 
| 88 | 83 52 3 1 1 86 | off |  |-  ( ph -> ( ( S X. { -u K } ) oF x. Y ) : S --> CC ) | 
| 89 | adddir | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) | |
| 90 | 89 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) | 
| 91 | 1 53 87 88 90 | caofdir |  |-  ( ph -> ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 92 | 91 | eqeq2d |  |-  ( ph -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 93 | 92 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF + ( ( ( S X. { -u K } ) oF x. Y ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) ) | 
| 94 | 81 93 | mpbird |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) | 
| 95 | ofnegsub |  |-  ( ( S e. { RR , CC } /\ ( ( S X. { K } ) oF x. Y ) : S --> CC /\ ( ( S X. { K } ) oF x. Y ) : S --> CC ) -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) ) | |
| 96 | 1 87 87 95 | syl3anc |  |-  ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) ) | 
| 97 | neg1cn | |- -u 1 e. CC | |
| 98 | 97 | fconst6 |  |-  ( S X. { -u 1 } ) : S --> CC | 
| 99 | 98 | a1i |  |-  ( ph -> ( S X. { -u 1 } ) : S --> CC ) | 
| 100 | 1 99 85 3 76 | caofass |  |-  ( ph -> ( ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) oF x. Y ) = ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) | 
| 101 | 97 | a1i | |- ( ph -> -u 1 e. CC ) | 
| 102 | 1 101 2 | ofc12 |  |-  ( ph -> ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) = ( S X. { ( -u 1 x. K ) } ) ) | 
| 103 | 2 | mulm1d | |- ( ph -> ( -u 1 x. K ) = -u K ) | 
| 104 | 103 | sneqd |  |-  ( ph -> { ( -u 1 x. K ) } = { -u K } ) | 
| 105 | 104 | xpeq2d |  |-  ( ph -> ( S X. { ( -u 1 x. K ) } ) = ( S X. { -u K } ) ) | 
| 106 | 102 105 | eqtrd |  |-  ( ph -> ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) = ( S X. { -u K } ) ) | 
| 107 | 106 | oveq1d |  |-  ( ph -> ( ( ( S X. { -u 1 } ) oF x. ( S X. { K } ) ) oF x. Y ) = ( ( S X. { -u K } ) oF x. Y ) ) | 
| 108 | 100 107 | eqtr3d |  |-  ( ph -> ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) = ( ( S X. { -u K } ) oF x. Y ) ) | 
| 109 | 108 | oveq2d |  |-  ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u 1 } ) oF x. ( ( S X. { K } ) oF x. Y ) ) ) = ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) ) | 
| 110 | ofsubid |  |-  ( ( S e. { RR , CC } /\ ( ( S X. { K } ) oF x. Y ) : S --> CC ) -> ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) = ( S X. { 0 } ) ) | |
| 111 | 1 87 110 | syl2anc |  |-  ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF - ( ( S X. { K } ) oF x. Y ) ) = ( S X. { 0 } ) ) | 
| 112 | 96 109 111 | 3eqtr3d |  |-  ( ph -> ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) = ( S X. { 0 } ) ) | 
| 113 | 112 | oveq1d |  |-  ( ph -> ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) | 
| 114 | 113 | eqeq2d |  |-  ( ph -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 115 | 114 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( ( ( S X. { K } ) oF x. Y ) oF + ( ( S X. { -u K } ) oF x. Y ) ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 116 | 94 115 | mpbid |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) | 
| 117 | 0cnd | |- ( ph -> 0 e. CC ) | |
| 118 | mul02 | |- ( x e. CC -> ( 0 x. x ) = 0 ) | |
| 119 | 118 | adantl | |- ( ( ph /\ x e. CC ) -> ( 0 x. x ) = 0 ) | 
| 120 | 1 53 117 117 119 | caofid2 |  |-  ( ph -> ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { 0 } ) ) | 
| 121 | 120 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S X. { 0 } ) oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { 0 } ) ) | 
| 122 | 116 121 | eqtrd |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( S X. { 0 } ) ) | 
| 123 | 1 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> S e. { RR , CC } ) | 
| 124 | 83 3 53 1 1 86 | off | |- ( ph -> ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC ) | 
| 125 | 124 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) : S --> CC ) | 
| 126 | 122 | dmeqd |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> dom ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = dom ( S X. { 0 } ) ) | 
| 127 | 0cn | |- 0 e. CC | |
| 128 | 127 | fconst6 |  |-  ( S X. { 0 } ) : S --> CC | 
| 129 | 128 | fdmi |  |-  dom ( S X. { 0 } ) = S | 
| 130 | 126 129 | eqtrdi |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> dom ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = S ) | 
| 131 | 123 125 130 | dvconstbi |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( ( S _D ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) = ( S X. { 0 } ) <-> E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) ) ) | 
| 132 | 122 131 | mpbid |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) ) | 
| 133 | oveq1 |  |-  ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) | |
| 134 | efne0 | |- ( -u ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) =/= 0 ) | |
| 135 | eldifsn |  |-  ( ( exp ` -u ( K x. u ) ) e. ( CC \ { 0 } ) <-> ( ( exp ` -u ( K x. u ) ) e. CC /\ ( exp ` -u ( K x. u ) ) =/= 0 ) ) | |
| 136 | 40 134 135 | sylanbrc |  |-  ( -u ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) e. ( CC \ { 0 } ) ) | 
| 137 | 13 136 | syl |  |-  ( ( ph /\ u e. S ) -> ( exp ` -u ( K x. u ) ) e. ( CC \ { 0 } ) ) | 
| 138 | 137 | fmpttd |  |-  ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> ( CC \ { 0 } ) ) | 
| 139 | ofdivcan4 |  |-  ( ( S e. { RR , CC } /\ Y : S --> CC /\ ( u e. S |-> ( exp ` -u ( K x. u ) ) ) : S --> ( CC \ { 0 } ) ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = Y ) | |
| 140 | 1 3 138 139 | syl3anc | |- ( ph -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = Y ) | 
| 141 | 140 | eqeq1d |  |-  ( ph -> ( ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 142 | 133 141 | imbitrid |  |-  ( ph -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 143 | 142 | adantr |  |-  ( ( ph /\ x e. CC ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) ) ) | 
| 144 | vex | |- x e. _V | |
| 145 | 144 | a1i | |- ( ( ph /\ u e. S ) -> x e. _V ) | 
| 146 | ovexd | |- ( ( ph /\ u e. S ) -> ( 1 / ( exp ` ( K x. u ) ) ) e. _V ) | |
| 147 | fconstmpt |  |-  ( S X. { x } ) = ( u e. S |-> x ) | |
| 148 | 147 | a1i |  |-  ( ph -> ( S X. { x } ) = ( u e. S |-> x ) ) | 
| 149 | efneg | |- ( ( K x. u ) e. CC -> ( exp ` -u ( K x. u ) ) = ( 1 / ( exp ` ( K x. u ) ) ) ) | |
| 150 | 12 149 | syl | |- ( ( ph /\ u e. S ) -> ( exp ` -u ( K x. u ) ) = ( 1 / ( exp ` ( K x. u ) ) ) ) | 
| 151 | 150 | mpteq2dva | |- ( ph -> ( u e. S |-> ( exp ` -u ( K x. u ) ) ) = ( u e. S |-> ( 1 / ( exp ` ( K x. u ) ) ) ) ) | 
| 152 | 1 145 146 148 151 | offval2 |  |-  ( ph -> ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) ) ) | 
| 153 | 152 | adantr |  |-  ( ( ph /\ x e. CC ) -> ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) ) ) | 
| 154 | efcl | |- ( ( K x. u ) e. CC -> ( exp ` ( K x. u ) ) e. CC ) | |
| 155 | efne0 | |- ( ( K x. u ) e. CC -> ( exp ` ( K x. u ) ) =/= 0 ) | |
| 156 | 154 155 | jca | |- ( ( K x. u ) e. CC -> ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) | 
| 157 | 12 156 | syl | |- ( ( ph /\ u e. S ) -> ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) | 
| 158 | ax-1ne0 | |- 1 =/= 0 | |
| 159 | 20 158 | pm3.2i | |- ( 1 e. CC /\ 1 =/= 0 ) | 
| 160 | divdiv2 | |- ( ( x e. CC /\ ( 1 e. CC /\ 1 =/= 0 ) /\ ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) ) | |
| 161 | 159 160 | mp3an2 | |- ( ( x e. CC /\ ( ( exp ` ( K x. u ) ) e. CC /\ ( exp ` ( K x. u ) ) =/= 0 ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) ) | 
| 162 | 157 161 | sylan2 | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) ) | 
| 163 | 12 154 | syl | |- ( ( ph /\ u e. S ) -> ( exp ` ( K x. u ) ) e. CC ) | 
| 164 | mulcl | |- ( ( x e. CC /\ ( exp ` ( K x. u ) ) e. CC ) -> ( x x. ( exp ` ( K x. u ) ) ) e. CC ) | |
| 165 | 163 164 | sylan2 | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( x x. ( exp ` ( K x. u ) ) ) e. CC ) | 
| 166 | 165 | div1d | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( ( x x. ( exp ` ( K x. u ) ) ) / 1 ) = ( x x. ( exp ` ( K x. u ) ) ) ) | 
| 167 | 162 166 | eqtrd | |- ( ( x e. CC /\ ( ph /\ u e. S ) ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( x x. ( exp ` ( K x. u ) ) ) ) | 
| 168 | 167 | ancoms | |- ( ( ( ph /\ u e. S ) /\ x e. CC ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( x x. ( exp ` ( K x. u ) ) ) ) | 
| 169 | 168 | an32s | |- ( ( ( ph /\ x e. CC ) /\ u e. S ) -> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) = ( x x. ( exp ` ( K x. u ) ) ) ) | 
| 170 | 169 | mpteq2dva | |- ( ( ph /\ x e. CC ) -> ( u e. S |-> ( x / ( 1 / ( exp ` ( K x. u ) ) ) ) ) = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) | 
| 171 | 153 170 | eqtrd |  |-  ( ( ph /\ x e. CC ) -> ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) | 
| 172 | 171 | eqeq2d |  |-  ( ( ph /\ x e. CC ) -> ( Y = ( ( S X. { x } ) oF / ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) <-> Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 173 | 143 172 | sylibd |  |-  ( ( ph /\ x e. CC ) -> ( ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 174 | 173 | reximdva |  |-  ( ph -> ( E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 175 | 174 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> ( E. x e. CC ( Y oF x. ( u e. S |-> ( exp ` -u ( K x. u ) ) ) ) = ( S X. { x } ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 176 | 132 175 | mpd |  |-  ( ( ph /\ ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) | 
| 177 | 176 | ex |  |-  ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) -> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 178 | 1 | adantr |  |-  ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> S e. { RR , CC } ) | 
| 179 | 2 | adantr | |- ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> K e. CC ) | 
| 180 | simprl | |- ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> x e. CC ) | |
| 181 | eqid | |- ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) | |
| 182 | 178 179 180 181 | expgrowthi |  |-  ( ( ph /\ ( x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) -> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 183 | 182 | 3impb |  |-  ( ( ph /\ x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) -> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 184 | oveq2 | |- ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( S _D Y ) = ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | |
| 185 | oveq2 |  |-  ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( ( S X. { K } ) oF x. Y ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | |
| 186 | 184 185 | eqeq12d |  |-  ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) ) | 
| 187 | 186 | 3ad2ant3 |  |-  ( ( ph /\ x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> ( S _D ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) = ( ( S X. { K } ) oF x. ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) ) | 
| 188 | 183 187 | mpbird |  |-  ( ( ph /\ x e. CC /\ Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) -> ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) | 
| 189 | 188 | rexlimdv3a |  |-  ( ph -> ( E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) -> ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) ) ) | 
| 190 | 177 189 | impbid |  |-  ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) ) ) | 
| 191 | oveq2 | |- ( u = t -> ( K x. u ) = ( K x. t ) ) | |
| 192 | 191 | fveq2d | |- ( u = t -> ( exp ` ( K x. u ) ) = ( exp ` ( K x. t ) ) ) | 
| 193 | 192 | oveq2d | |- ( u = t -> ( x x. ( exp ` ( K x. u ) ) ) = ( x x. ( exp ` ( K x. t ) ) ) ) | 
| 194 | 193 | cbvmptv | |- ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) = ( t e. S |-> ( x x. ( exp ` ( K x. t ) ) ) ) | 
| 195 | oveq1 | |- ( x = c -> ( x x. ( exp ` ( K x. t ) ) ) = ( c x. ( exp ` ( K x. t ) ) ) ) | |
| 196 | 195 | mpteq2dv | |- ( x = c -> ( t e. S |-> ( x x. ( exp ` ( K x. t ) ) ) ) = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) | 
| 197 | 194 196 | eqtrid | |- ( x = c -> ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) | 
| 198 | 197 | eqeq2d | |- ( x = c -> ( Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) <-> Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) ) | 
| 199 | 198 | cbvrexvw | |- ( E. x e. CC Y = ( u e. S |-> ( x x. ( exp ` ( K x. u ) ) ) ) <-> E. c e. CC Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) | 
| 200 | 190 199 | bitrdi |  |-  ( ph -> ( ( S _D Y ) = ( ( S X. { K } ) oF x. Y ) <-> E. c e. CC Y = ( t e. S |-> ( c x. ( exp ` ( K x. t ) ) ) ) ) ) |