| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvconstbi.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvconstbi.y |  |-  ( ph -> Y : S --> CC ) | 
						
							| 3 |  | dvconstbi.dy |  |-  ( ph -> dom ( S _D Y ) = S ) | 
						
							| 4 |  | elpri |  |-  ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> ( S = RR \/ S = CC ) ) | 
						
							| 6 |  | 0re |  |-  0 e. RR | 
						
							| 7 |  | eleq2 |  |-  ( S = RR -> ( 0 e. S <-> 0 e. RR ) ) | 
						
							| 8 | 6 7 | mpbiri |  |-  ( S = RR -> 0 e. S ) | 
						
							| 9 |  | 0cn |  |-  0 e. CC | 
						
							| 10 |  | eleq2 |  |-  ( S = CC -> ( 0 e. S <-> 0 e. CC ) ) | 
						
							| 11 | 9 10 | mpbiri |  |-  ( S = CC -> 0 e. S ) | 
						
							| 12 | 8 11 | jaoi |  |-  ( ( S = RR \/ S = CC ) -> 0 e. S ) | 
						
							| 13 | 5 12 | syl |  |-  ( ph -> 0 e. S ) | 
						
							| 14 |  | ffvelcdm |  |-  ( ( Y : S --> CC /\ 0 e. S ) -> ( Y ` 0 ) e. CC ) | 
						
							| 15 | 2 13 14 | syl2anc |  |-  ( ph -> ( Y ` 0 ) e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( Y ` 0 ) e. CC ) | 
						
							| 17 | 2 | ffnd |  |-  ( ph -> Y Fn S ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> Y Fn S ) | 
						
							| 19 |  | fvex |  |-  ( Y ` 0 ) e. _V | 
						
							| 20 |  | fnconstg |  |-  ( ( Y ` 0 ) e. _V -> ( S X. { ( Y ` 0 ) } ) Fn S ) | 
						
							| 21 | 19 20 | mp1i |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( S X. { ( Y ` 0 ) } ) Fn S ) | 
						
							| 22 | 19 | fvconst2 |  |-  ( y e. S -> ( ( S X. { ( Y ` 0 ) } ) ` y ) = ( Y ` 0 ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ y e. S ) -> ( ( S X. { ( Y ` 0 ) } ) ` y ) = ( Y ` 0 ) ) | 
						
							| 24 |  | eqid |  |-  ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( S X. S ) ) | 
						
							| 25 | 1 24 | sblpnf |  |-  ( ( ph /\ 0 e. S ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = S ) | 
						
							| 26 | 13 25 | mpdan |  |-  ( ph -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = S ) | 
						
							| 27 | 26 | eleq2d |  |-  ( ph -> ( y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) <-> y e. S ) ) | 
						
							| 28 | 27 | biimpar |  |-  ( ( ph /\ y e. S ) -> y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) | 
						
							| 29 | 13 26 | eleqtrrd |  |-  ( ph -> 0 e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) | 
						
							| 30 | 1 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> S e. { RR , CC } ) | 
						
							| 31 |  | ssidd |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> S C_ S ) | 
						
							| 32 | 2 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> Y : S --> CC ) | 
						
							| 33 | 13 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> 0 e. S ) | 
						
							| 34 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 35 | 34 | a1i |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> +oo e. RR* ) | 
						
							| 36 |  | eqid |  |-  ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) | 
						
							| 37 | 26 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = S ) | 
						
							| 38 | 3 | adantr |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> dom ( S _D Y ) = S ) | 
						
							| 39 | 37 38 | eqtr4d |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = dom ( S _D Y ) ) | 
						
							| 40 |  | eqimss |  |-  ( ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = dom ( S _D Y ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) C_ dom ( S _D Y ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) C_ dom ( S _D Y ) ) | 
						
							| 42 | 6 | a1i |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> 0 e. RR ) | 
						
							| 43 | 26 | eleq2d |  |-  ( ph -> ( x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) <-> x e. S ) ) | 
						
							| 44 | 43 | biimpa |  |-  ( ( ph /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> x e. S ) | 
						
							| 45 | 44 | 3adant2 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> x e. S ) | 
						
							| 46 |  | fveq1 |  |-  ( ( S _D Y ) = ( S X. { 0 } ) -> ( ( S _D Y ) ` x ) = ( ( S X. { 0 } ) ` x ) ) | 
						
							| 47 |  | c0ex |  |-  0 e. _V | 
						
							| 48 | 47 | fvconst2 |  |-  ( x e. S -> ( ( S X. { 0 } ) ` x ) = 0 ) | 
						
							| 49 | 46 48 | sylan9eq |  |-  ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( ( S _D Y ) ` x ) = 0 ) | 
						
							| 50 | 49 9 | eqeltrdi |  |-  ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( ( S _D Y ) ` x ) e. CC ) | 
						
							| 51 | 50 | abscld |  |-  ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) e. RR ) | 
						
							| 52 | 49 | abs00bd |  |-  ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) = 0 ) | 
						
							| 53 |  | eqle |  |-  ( ( ( abs ` ( ( S _D Y ) ` x ) ) e. RR /\ ( abs ` ( ( S _D Y ) ` x ) ) = 0 ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) | 
						
							| 54 | 51 52 53 | syl2anc |  |-  ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) | 
						
							| 55 | 54 | 3adant1 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) | 
						
							| 56 | 45 55 | syld3an3 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) | 
						
							| 57 | 56 | 3expa |  |-  ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) | 
						
							| 58 | 30 24 31 32 33 35 36 41 42 57 | dvlip2 |  |-  ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ ( 0 e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) /\ y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) | 
						
							| 59 | 29 58 | sylanr1 |  |-  ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ ( ph /\ y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) | 
						
							| 60 | 59 | 3impdi |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) | 
						
							| 61 | 28 60 | syl3an3 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ ( ph /\ y e. S ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) | 
						
							| 62 | 61 | 3expa |  |-  ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ ( ph /\ y e. S ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) | 
						
							| 63 | 62 | 3impdi |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) | 
						
							| 64 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 65 | 1 64 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 66 | 65 | sseld |  |-  ( ph -> ( y e. S -> y e. CC ) ) | 
						
							| 67 |  | subcl |  |-  ( ( 0 e. CC /\ y e. CC ) -> ( 0 - y ) e. CC ) | 
						
							| 68 | 67 | abscld |  |-  ( ( 0 e. CC /\ y e. CC ) -> ( abs ` ( 0 - y ) ) e. RR ) | 
						
							| 69 | 9 68 | mpan |  |-  ( y e. CC -> ( abs ` ( 0 - y ) ) e. RR ) | 
						
							| 70 | 66 69 | syl6 |  |-  ( ph -> ( y e. S -> ( abs ` ( 0 - y ) ) e. RR ) ) | 
						
							| 71 | 70 | imp |  |-  ( ( ph /\ y e. S ) -> ( abs ` ( 0 - y ) ) e. RR ) | 
						
							| 72 | 71 | recnd |  |-  ( ( ph /\ y e. S ) -> ( abs ` ( 0 - y ) ) e. CC ) | 
						
							| 73 | 72 | mul02d |  |-  ( ( ph /\ y e. S ) -> ( 0 x. ( abs ` ( 0 - y ) ) ) = 0 ) | 
						
							| 74 | 73 | 3adant2 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( 0 x. ( abs ` ( 0 - y ) ) ) = 0 ) | 
						
							| 75 | 63 74 | breqtrd |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 ) | 
						
							| 76 |  | ffvelcdm |  |-  ( ( Y : S --> CC /\ y e. S ) -> ( Y ` y ) e. CC ) | 
						
							| 77 | 14 76 | anim12dan |  |-  ( ( Y : S --> CC /\ ( 0 e. S /\ y e. S ) ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) | 
						
							| 78 | 2 77 | sylan |  |-  ( ( ph /\ ( 0 e. S /\ y e. S ) ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) | 
						
							| 79 | 78 | 3impb |  |-  ( ( ph /\ 0 e. S /\ y e. S ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) | 
						
							| 80 | 13 79 | syl3an2 |  |-  ( ( ph /\ ph /\ y e. S ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) | 
						
							| 81 | 80 | 3anidm12 |  |-  ( ( ph /\ y e. S ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) | 
						
							| 82 |  | subcl |  |-  ( ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) -> ( ( Y ` 0 ) - ( Y ` y ) ) e. CC ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( ph /\ y e. S ) -> ( ( Y ` 0 ) - ( Y ` y ) ) e. CC ) | 
						
							| 84 | 83 | absge0d |  |-  ( ( ph /\ y e. S ) -> 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) | 
						
							| 85 | 84 | 3adant2 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) | 
						
							| 86 | 83 | abscld |  |-  ( ( ph /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) e. RR ) | 
						
							| 87 |  | letri3 |  |-  ( ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) e. RR /\ 0 e. RR ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) ) ) | 
						
							| 88 | 86 6 87 | sylancl |  |-  ( ( ph /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) ) ) | 
						
							| 89 | 88 | 3adant2 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) ) ) | 
						
							| 90 | 75 85 89 | mpbir2and |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 ) | 
						
							| 91 | 83 | abs00ad |  |-  ( ( ph /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( Y ` 0 ) - ( Y ` y ) ) = 0 ) ) | 
						
							| 92 | 91 | 3adant2 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( Y ` 0 ) - ( Y ` y ) ) = 0 ) ) | 
						
							| 93 | 90 92 | mpbid |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( Y ` 0 ) - ( Y ` y ) ) = 0 ) | 
						
							| 94 |  | subeq0 |  |-  ( ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) -> ( ( ( Y ` 0 ) - ( Y ` y ) ) = 0 <-> ( Y ` 0 ) = ( Y ` y ) ) ) | 
						
							| 95 | 81 94 | syl |  |-  ( ( ph /\ y e. S ) -> ( ( ( Y ` 0 ) - ( Y ` y ) ) = 0 <-> ( Y ` 0 ) = ( Y ` y ) ) ) | 
						
							| 96 | 95 | 3adant2 |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( ( Y ` 0 ) - ( Y ` y ) ) = 0 <-> ( Y ` 0 ) = ( Y ` y ) ) ) | 
						
							| 97 | 93 96 | mpbid |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( Y ` 0 ) = ( Y ` y ) ) | 
						
							| 98 | 97 | 3expa |  |-  ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ y e. S ) -> ( Y ` 0 ) = ( Y ` y ) ) | 
						
							| 99 | 23 98 | eqtr2d |  |-  ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ y e. S ) -> ( Y ` y ) = ( ( S X. { ( Y ` 0 ) } ) ` y ) ) | 
						
							| 100 | 18 21 99 | eqfnfvd |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> Y = ( S X. { ( Y ` 0 ) } ) ) | 
						
							| 101 |  | sneq |  |-  ( x = ( Y ` 0 ) -> { x } = { ( Y ` 0 ) } ) | 
						
							| 102 | 101 | xpeq2d |  |-  ( x = ( Y ` 0 ) -> ( S X. { x } ) = ( S X. { ( Y ` 0 ) } ) ) | 
						
							| 103 | 102 | rspceeqv |  |-  ( ( ( Y ` 0 ) e. CC /\ Y = ( S X. { ( Y ` 0 ) } ) ) -> E. x e. CC Y = ( S X. { x } ) ) | 
						
							| 104 | 16 100 103 | syl2anc |  |-  ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> E. x e. CC Y = ( S X. { x } ) ) | 
						
							| 105 | 104 | ex |  |-  ( ph -> ( ( S _D Y ) = ( S X. { 0 } ) -> E. x e. CC Y = ( S X. { x } ) ) ) | 
						
							| 106 |  | oveq2 |  |-  ( Y = ( S X. { x } ) -> ( S _D Y ) = ( S _D ( S X. { x } ) ) ) | 
						
							| 107 | 106 | 3ad2ant3 |  |-  ( ( ph /\ x e. CC /\ Y = ( S X. { x } ) ) -> ( S _D Y ) = ( S _D ( S X. { x } ) ) ) | 
						
							| 108 |  | dvsconst |  |-  ( ( S e. { RR , CC } /\ x e. CC ) -> ( S _D ( S X. { x } ) ) = ( S X. { 0 } ) ) | 
						
							| 109 | 1 108 | sylan |  |-  ( ( ph /\ x e. CC ) -> ( S _D ( S X. { x } ) ) = ( S X. { 0 } ) ) | 
						
							| 110 | 109 | 3adant3 |  |-  ( ( ph /\ x e. CC /\ Y = ( S X. { x } ) ) -> ( S _D ( S X. { x } ) ) = ( S X. { 0 } ) ) | 
						
							| 111 | 107 110 | eqtrd |  |-  ( ( ph /\ x e. CC /\ Y = ( S X. { x } ) ) -> ( S _D Y ) = ( S X. { 0 } ) ) | 
						
							| 112 | 111 | rexlimdv3a |  |-  ( ph -> ( E. x e. CC Y = ( S X. { x } ) -> ( S _D Y ) = ( S X. { 0 } ) ) ) | 
						
							| 113 | 105 112 | impbid |  |-  ( ph -> ( ( S _D Y ) = ( S X. { 0 } ) <-> E. x e. CC Y = ( S X. { x } ) ) ) | 
						
							| 114 |  | sneq |  |-  ( c = x -> { c } = { x } ) | 
						
							| 115 | 114 | xpeq2d |  |-  ( c = x -> ( S X. { c } ) = ( S X. { x } ) ) | 
						
							| 116 | 115 | eqeq2d |  |-  ( c = x -> ( Y = ( S X. { c } ) <-> Y = ( S X. { x } ) ) ) | 
						
							| 117 | 116 | cbvrexvw |  |-  ( E. c e. CC Y = ( S X. { c } ) <-> E. x e. CC Y = ( S X. { x } ) ) | 
						
							| 118 | 113 117 | bitr4di |  |-  ( ph -> ( ( S _D Y ) = ( S X. { 0 } ) <-> E. c e. CC Y = ( S X. { c } ) ) ) |