| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvconstbi.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvconstbi.y |
|- ( ph -> Y : S --> CC ) |
| 3 |
|
dvconstbi.dy |
|- ( ph -> dom ( S _D Y ) = S ) |
| 4 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( S = RR \/ S = CC ) ) |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
|
eleq2 |
|- ( S = RR -> ( 0 e. S <-> 0 e. RR ) ) |
| 8 |
6 7
|
mpbiri |
|- ( S = RR -> 0 e. S ) |
| 9 |
|
0cn |
|- 0 e. CC |
| 10 |
|
eleq2 |
|- ( S = CC -> ( 0 e. S <-> 0 e. CC ) ) |
| 11 |
9 10
|
mpbiri |
|- ( S = CC -> 0 e. S ) |
| 12 |
8 11
|
jaoi |
|- ( ( S = RR \/ S = CC ) -> 0 e. S ) |
| 13 |
5 12
|
syl |
|- ( ph -> 0 e. S ) |
| 14 |
|
ffvelcdm |
|- ( ( Y : S --> CC /\ 0 e. S ) -> ( Y ` 0 ) e. CC ) |
| 15 |
2 13 14
|
syl2anc |
|- ( ph -> ( Y ` 0 ) e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( Y ` 0 ) e. CC ) |
| 17 |
2
|
ffnd |
|- ( ph -> Y Fn S ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> Y Fn S ) |
| 19 |
|
fvex |
|- ( Y ` 0 ) e. _V |
| 20 |
|
fnconstg |
|- ( ( Y ` 0 ) e. _V -> ( S X. { ( Y ` 0 ) } ) Fn S ) |
| 21 |
19 20
|
mp1i |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( S X. { ( Y ` 0 ) } ) Fn S ) |
| 22 |
19
|
fvconst2 |
|- ( y e. S -> ( ( S X. { ( Y ` 0 ) } ) ` y ) = ( Y ` 0 ) ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ y e. S ) -> ( ( S X. { ( Y ` 0 ) } ) ` y ) = ( Y ` 0 ) ) |
| 24 |
|
eqid |
|- ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( S X. S ) ) |
| 25 |
1 24
|
sblpnf |
|- ( ( ph /\ 0 e. S ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = S ) |
| 26 |
13 25
|
mpdan |
|- ( ph -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = S ) |
| 27 |
26
|
eleq2d |
|- ( ph -> ( y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) <-> y e. S ) ) |
| 28 |
27
|
biimpar |
|- ( ( ph /\ y e. S ) -> y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) |
| 29 |
13 26
|
eleqtrrd |
|- ( ph -> 0 e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) |
| 30 |
1
|
adantr |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> S e. { RR , CC } ) |
| 31 |
|
ssidd |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> S C_ S ) |
| 32 |
2
|
adantr |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> Y : S --> CC ) |
| 33 |
13
|
adantr |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> 0 e. S ) |
| 34 |
|
pnfxr |
|- +oo e. RR* |
| 35 |
34
|
a1i |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> +oo e. RR* ) |
| 36 |
|
eqid |
|- ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) |
| 37 |
26
|
adantr |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = S ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> dom ( S _D Y ) = S ) |
| 39 |
37 38
|
eqtr4d |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = dom ( S _D Y ) ) |
| 40 |
|
eqimss |
|- ( ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) = dom ( S _D Y ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) C_ dom ( S _D Y ) ) |
| 41 |
39 40
|
syl |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) C_ dom ( S _D Y ) ) |
| 42 |
6
|
a1i |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> 0 e. RR ) |
| 43 |
26
|
eleq2d |
|- ( ph -> ( x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) <-> x e. S ) ) |
| 44 |
43
|
biimpa |
|- ( ( ph /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> x e. S ) |
| 45 |
44
|
3adant2 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> x e. S ) |
| 46 |
|
fveq1 |
|- ( ( S _D Y ) = ( S X. { 0 } ) -> ( ( S _D Y ) ` x ) = ( ( S X. { 0 } ) ` x ) ) |
| 47 |
|
c0ex |
|- 0 e. _V |
| 48 |
47
|
fvconst2 |
|- ( x e. S -> ( ( S X. { 0 } ) ` x ) = 0 ) |
| 49 |
46 48
|
sylan9eq |
|- ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( ( S _D Y ) ` x ) = 0 ) |
| 50 |
49 9
|
eqeltrdi |
|- ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( ( S _D Y ) ` x ) e. CC ) |
| 51 |
50
|
abscld |
|- ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) e. RR ) |
| 52 |
49
|
abs00bd |
|- ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) = 0 ) |
| 53 |
|
eqle |
|- ( ( ( abs ` ( ( S _D Y ) ` x ) ) e. RR /\ ( abs ` ( ( S _D Y ) ` x ) ) = 0 ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) |
| 54 |
51 52 53
|
syl2anc |
|- ( ( ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) |
| 55 |
54
|
3adant1 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ x e. S ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) |
| 56 |
45 55
|
syld3an3 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) |
| 57 |
56
|
3expa |
|- ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ x e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> ( abs ` ( ( S _D Y ) ` x ) ) <_ 0 ) |
| 58 |
30 24 31 32 33 35 36 41 42 57
|
dvlip2 |
|- ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ ( 0 e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) /\ y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) |
| 59 |
29 58
|
sylanr1 |
|- ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ ( ph /\ y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) |
| 60 |
59
|
3impdi |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. ( 0 ( ball ` ( ( abs o. - ) |` ( S X. S ) ) ) +oo ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) |
| 61 |
28 60
|
syl3an3 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ ( ph /\ y e. S ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) |
| 62 |
61
|
3expa |
|- ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ ( ph /\ y e. S ) ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) |
| 63 |
62
|
3impdi |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ ( 0 x. ( abs ` ( 0 - y ) ) ) ) |
| 64 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 65 |
1 64
|
syl |
|- ( ph -> S C_ CC ) |
| 66 |
65
|
sseld |
|- ( ph -> ( y e. S -> y e. CC ) ) |
| 67 |
|
subcl |
|- ( ( 0 e. CC /\ y e. CC ) -> ( 0 - y ) e. CC ) |
| 68 |
67
|
abscld |
|- ( ( 0 e. CC /\ y e. CC ) -> ( abs ` ( 0 - y ) ) e. RR ) |
| 69 |
9 68
|
mpan |
|- ( y e. CC -> ( abs ` ( 0 - y ) ) e. RR ) |
| 70 |
66 69
|
syl6 |
|- ( ph -> ( y e. S -> ( abs ` ( 0 - y ) ) e. RR ) ) |
| 71 |
70
|
imp |
|- ( ( ph /\ y e. S ) -> ( abs ` ( 0 - y ) ) e. RR ) |
| 72 |
71
|
recnd |
|- ( ( ph /\ y e. S ) -> ( abs ` ( 0 - y ) ) e. CC ) |
| 73 |
72
|
mul02d |
|- ( ( ph /\ y e. S ) -> ( 0 x. ( abs ` ( 0 - y ) ) ) = 0 ) |
| 74 |
73
|
3adant2 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( 0 x. ( abs ` ( 0 - y ) ) ) = 0 ) |
| 75 |
63 74
|
breqtrd |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 ) |
| 76 |
|
ffvelcdm |
|- ( ( Y : S --> CC /\ y e. S ) -> ( Y ` y ) e. CC ) |
| 77 |
14 76
|
anim12dan |
|- ( ( Y : S --> CC /\ ( 0 e. S /\ y e. S ) ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) |
| 78 |
2 77
|
sylan |
|- ( ( ph /\ ( 0 e. S /\ y e. S ) ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) |
| 79 |
78
|
3impb |
|- ( ( ph /\ 0 e. S /\ y e. S ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) |
| 80 |
13 79
|
syl3an2 |
|- ( ( ph /\ ph /\ y e. S ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) |
| 81 |
80
|
3anidm12 |
|- ( ( ph /\ y e. S ) -> ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) ) |
| 82 |
|
subcl |
|- ( ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) -> ( ( Y ` 0 ) - ( Y ` y ) ) e. CC ) |
| 83 |
81 82
|
syl |
|- ( ( ph /\ y e. S ) -> ( ( Y ` 0 ) - ( Y ` y ) ) e. CC ) |
| 84 |
83
|
absge0d |
|- ( ( ph /\ y e. S ) -> 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) |
| 85 |
84
|
3adant2 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) |
| 86 |
83
|
abscld |
|- ( ( ph /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) e. RR ) |
| 87 |
|
letri3 |
|- ( ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) e. RR /\ 0 e. RR ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) ) ) |
| 88 |
86 6 87
|
sylancl |
|- ( ( ph /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) ) ) |
| 89 |
88
|
3adant2 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) ) ) ) |
| 90 |
75 85 89
|
mpbir2and |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 ) |
| 91 |
83
|
abs00ad |
|- ( ( ph /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( Y ` 0 ) - ( Y ` y ) ) = 0 ) ) |
| 92 |
91
|
3adant2 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( abs ` ( ( Y ` 0 ) - ( Y ` y ) ) ) = 0 <-> ( ( Y ` 0 ) - ( Y ` y ) ) = 0 ) ) |
| 93 |
90 92
|
mpbid |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( Y ` 0 ) - ( Y ` y ) ) = 0 ) |
| 94 |
|
subeq0 |
|- ( ( ( Y ` 0 ) e. CC /\ ( Y ` y ) e. CC ) -> ( ( ( Y ` 0 ) - ( Y ` y ) ) = 0 <-> ( Y ` 0 ) = ( Y ` y ) ) ) |
| 95 |
81 94
|
syl |
|- ( ( ph /\ y e. S ) -> ( ( ( Y ` 0 ) - ( Y ` y ) ) = 0 <-> ( Y ` 0 ) = ( Y ` y ) ) ) |
| 96 |
95
|
3adant2 |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( ( ( Y ` 0 ) - ( Y ` y ) ) = 0 <-> ( Y ` 0 ) = ( Y ` y ) ) ) |
| 97 |
93 96
|
mpbid |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) /\ y e. S ) -> ( Y ` 0 ) = ( Y ` y ) ) |
| 98 |
97
|
3expa |
|- ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ y e. S ) -> ( Y ` 0 ) = ( Y ` y ) ) |
| 99 |
23 98
|
eqtr2d |
|- ( ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) /\ y e. S ) -> ( Y ` y ) = ( ( S X. { ( Y ` 0 ) } ) ` y ) ) |
| 100 |
18 21 99
|
eqfnfvd |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> Y = ( S X. { ( Y ` 0 ) } ) ) |
| 101 |
|
sneq |
|- ( x = ( Y ` 0 ) -> { x } = { ( Y ` 0 ) } ) |
| 102 |
101
|
xpeq2d |
|- ( x = ( Y ` 0 ) -> ( S X. { x } ) = ( S X. { ( Y ` 0 ) } ) ) |
| 103 |
102
|
rspceeqv |
|- ( ( ( Y ` 0 ) e. CC /\ Y = ( S X. { ( Y ` 0 ) } ) ) -> E. x e. CC Y = ( S X. { x } ) ) |
| 104 |
16 100 103
|
syl2anc |
|- ( ( ph /\ ( S _D Y ) = ( S X. { 0 } ) ) -> E. x e. CC Y = ( S X. { x } ) ) |
| 105 |
104
|
ex |
|- ( ph -> ( ( S _D Y ) = ( S X. { 0 } ) -> E. x e. CC Y = ( S X. { x } ) ) ) |
| 106 |
|
oveq2 |
|- ( Y = ( S X. { x } ) -> ( S _D Y ) = ( S _D ( S X. { x } ) ) ) |
| 107 |
106
|
3ad2ant3 |
|- ( ( ph /\ x e. CC /\ Y = ( S X. { x } ) ) -> ( S _D Y ) = ( S _D ( S X. { x } ) ) ) |
| 108 |
|
dvsconst |
|- ( ( S e. { RR , CC } /\ x e. CC ) -> ( S _D ( S X. { x } ) ) = ( S X. { 0 } ) ) |
| 109 |
1 108
|
sylan |
|- ( ( ph /\ x e. CC ) -> ( S _D ( S X. { x } ) ) = ( S X. { 0 } ) ) |
| 110 |
109
|
3adant3 |
|- ( ( ph /\ x e. CC /\ Y = ( S X. { x } ) ) -> ( S _D ( S X. { x } ) ) = ( S X. { 0 } ) ) |
| 111 |
107 110
|
eqtrd |
|- ( ( ph /\ x e. CC /\ Y = ( S X. { x } ) ) -> ( S _D Y ) = ( S X. { 0 } ) ) |
| 112 |
111
|
rexlimdv3a |
|- ( ph -> ( E. x e. CC Y = ( S X. { x } ) -> ( S _D Y ) = ( S X. { 0 } ) ) ) |
| 113 |
105 112
|
impbid |
|- ( ph -> ( ( S _D Y ) = ( S X. { 0 } ) <-> E. x e. CC Y = ( S X. { x } ) ) ) |
| 114 |
|
sneq |
|- ( c = x -> { c } = { x } ) |
| 115 |
114
|
xpeq2d |
|- ( c = x -> ( S X. { c } ) = ( S X. { x } ) ) |
| 116 |
115
|
eqeq2d |
|- ( c = x -> ( Y = ( S X. { c } ) <-> Y = ( S X. { x } ) ) ) |
| 117 |
116
|
cbvrexvw |
|- ( E. c e. CC Y = ( S X. { c } ) <-> E. x e. CC Y = ( S X. { x } ) ) |
| 118 |
113 117
|
bitr4di |
|- ( ph -> ( ( S _D Y ) = ( S X. { 0 } ) <-> E. c e. CC Y = ( S X. { c } ) ) ) |