| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvconstbi.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvconstbi.y |
⊢ ( 𝜑 → 𝑌 : 𝑆 ⟶ ℂ ) |
| 3 |
|
dvconstbi.dy |
⊢ ( 𝜑 → dom ( 𝑆 D 𝑌 ) = 𝑆 ) |
| 4 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
|
eleq2 |
⊢ ( 𝑆 = ℝ → ( 0 ∈ 𝑆 ↔ 0 ∈ ℝ ) ) |
| 8 |
6 7
|
mpbiri |
⊢ ( 𝑆 = ℝ → 0 ∈ 𝑆 ) |
| 9 |
|
0cn |
⊢ 0 ∈ ℂ |
| 10 |
|
eleq2 |
⊢ ( 𝑆 = ℂ → ( 0 ∈ 𝑆 ↔ 0 ∈ ℂ ) ) |
| 11 |
9 10
|
mpbiri |
⊢ ( 𝑆 = ℂ → 0 ∈ 𝑆 ) |
| 12 |
8 11
|
jaoi |
⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 0 ∈ 𝑆 ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 14 |
|
ffvelcdm |
⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ ∧ 0 ∈ 𝑆 ) → ( 𝑌 ‘ 0 ) ∈ ℂ ) |
| 15 |
2 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ‘ 0 ) ∈ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 𝑌 ‘ 0 ) ∈ ℂ ) |
| 17 |
2
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn 𝑆 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑌 Fn 𝑆 ) |
| 19 |
|
fvex |
⊢ ( 𝑌 ‘ 0 ) ∈ V |
| 20 |
|
fnconstg |
⊢ ( ( 𝑌 ‘ 0 ) ∈ V → ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) Fn 𝑆 ) |
| 21 |
19 20
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) Fn 𝑆 ) |
| 22 |
19
|
fvconst2 |
⊢ ( 𝑦 ∈ 𝑆 → ( ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 ) = ( 𝑌 ‘ 0 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 ) = ( 𝑌 ‘ 0 ) ) |
| 24 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) |
| 25 |
1 24
|
sblpnf |
⊢ ( ( 𝜑 ∧ 0 ∈ 𝑆 ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = 𝑆 ) |
| 26 |
13 25
|
mpdan |
⊢ ( 𝜑 → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = 𝑆 ) |
| 27 |
26
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ↔ 𝑦 ∈ 𝑆 ) ) |
| 28 |
27
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) |
| 29 |
13 26
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) |
| 30 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 31 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑆 ⊆ 𝑆 ) |
| 32 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑌 : 𝑆 ⟶ ℂ ) |
| 33 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 0 ∈ 𝑆 ) |
| 34 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → +∞ ∈ ℝ* ) |
| 36 |
|
eqid |
⊢ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) |
| 37 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = 𝑆 ) |
| 38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → dom ( 𝑆 D 𝑌 ) = 𝑆 ) |
| 39 |
37 38
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = dom ( 𝑆 D 𝑌 ) ) |
| 40 |
|
eqimss |
⊢ ( ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = dom ( 𝑆 D 𝑌 ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ⊆ dom ( 𝑆 D 𝑌 ) ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ⊆ dom ( 𝑆 D 𝑌 ) ) |
| 42 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 0 ∈ ℝ ) |
| 43 |
26
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ↔ 𝑥 ∈ 𝑆 ) ) |
| 44 |
43
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → 𝑥 ∈ 𝑆 ) |
| 45 |
44
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → 𝑥 ∈ 𝑆 ) |
| 46 |
|
fveq1 |
⊢ ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) → ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) = ( ( 𝑆 × { 0 } ) ‘ 𝑥 ) ) |
| 47 |
|
c0ex |
⊢ 0 ∈ V |
| 48 |
47
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑆 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 49 |
46 48
|
sylan9eq |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) = 0 ) |
| 50 |
49 9
|
eqeltrdi |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ∈ ℂ ) |
| 51 |
50
|
abscld |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 52 |
49
|
abs00bd |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) = 0 ) |
| 53 |
|
eqle |
⊢ ( ( ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ∈ ℝ ∧ ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) = 0 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
| 54 |
51 52 53
|
syl2anc |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
| 55 |
54
|
3adant1 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
| 56 |
45 55
|
syld3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
| 57 |
56
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
| 58 |
30 24 31 32 33 35 36 41 42 57
|
dvlip2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ ( 0 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ∧ 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
| 59 |
29 58
|
sylanr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ ( 𝜑 ∧ 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
| 60 |
59
|
3impdi |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
| 61 |
28 60
|
syl3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
| 62 |
61
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
| 63 |
62
|
3impdi |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
| 64 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 65 |
1 64
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 66 |
65
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) ) |
| 67 |
|
subcl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 − 𝑦 ) ∈ ℂ ) |
| 68 |
67
|
abscld |
⊢ ( ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) |
| 69 |
9 68
|
mpan |
⊢ ( 𝑦 ∈ ℂ → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) |
| 70 |
66 69
|
syl6 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) ) |
| 71 |
70
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) |
| 72 |
71
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℂ ) |
| 73 |
72
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) = 0 ) |
| 74 |
73
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) = 0 ) |
| 75 |
63 74
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ) |
| 76 |
|
ffvelcdm |
⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) |
| 77 |
14 76
|
anim12dan |
⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ ∧ ( 0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
| 78 |
2 77
|
sylan |
⊢ ( ( 𝜑 ∧ ( 0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
| 79 |
78
|
3impb |
⊢ ( ( 𝜑 ∧ 0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
| 80 |
13 79
|
syl3an2 |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
| 81 |
80
|
3anidm12 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
| 82 |
|
subcl |
⊢ ( ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) → ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ∈ ℂ ) |
| 83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ∈ ℂ ) |
| 84 |
83
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 85 |
84
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 86 |
83
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ∈ ℝ ) |
| 87 |
|
letri3 |
⊢ ( ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) |
| 88 |
86 6 87
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) |
| 89 |
88
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) |
| 90 |
75 85 89
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ) |
| 91 |
83
|
abs00ad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ) ) |
| 92 |
91
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ) ) |
| 93 |
90 92
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ) |
| 94 |
|
subeq0 |
⊢ ( ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) → ( ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ↔ ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
| 95 |
81 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ↔ ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
| 96 |
95
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ↔ ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
| 97 |
93 96
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) |
| 98 |
97
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) |
| 99 |
23 98
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑦 ) = ( ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 ) ) |
| 100 |
18 21 99
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑌 = ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ) |
| 101 |
|
sneq |
⊢ ( 𝑥 = ( 𝑌 ‘ 0 ) → { 𝑥 } = { ( 𝑌 ‘ 0 ) } ) |
| 102 |
101
|
xpeq2d |
⊢ ( 𝑥 = ( 𝑌 ‘ 0 ) → ( 𝑆 × { 𝑥 } ) = ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ) |
| 103 |
102
|
rspceeqv |
⊢ ( ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ 𝑌 = ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ) → ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) |
| 104 |
16 100 103
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) |
| 105 |
104
|
ex |
⊢ ( 𝜑 → ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) → ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) ) |
| 106 |
|
oveq2 |
⊢ ( 𝑌 = ( 𝑆 × { 𝑥 } ) → ( 𝑆 D 𝑌 ) = ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) ) |
| 107 |
106
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = ( 𝑆 × { 𝑥 } ) ) → ( 𝑆 D 𝑌 ) = ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) ) |
| 108 |
|
dvsconst |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑥 ∈ ℂ ) → ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) = ( 𝑆 × { 0 } ) ) |
| 109 |
1 108
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) = ( 𝑆 × { 0 } ) ) |
| 110 |
109
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = ( 𝑆 × { 𝑥 } ) ) → ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) = ( 𝑆 × { 0 } ) ) |
| 111 |
107 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = ( 𝑆 × { 𝑥 } ) ) → ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) |
| 112 |
111
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) → ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ) |
| 113 |
105 112
|
impbid |
⊢ ( 𝜑 → ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ↔ ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) ) |
| 114 |
|
sneq |
⊢ ( 𝑐 = 𝑥 → { 𝑐 } = { 𝑥 } ) |
| 115 |
114
|
xpeq2d |
⊢ ( 𝑐 = 𝑥 → ( 𝑆 × { 𝑐 } ) = ( 𝑆 × { 𝑥 } ) ) |
| 116 |
115
|
eqeq2d |
⊢ ( 𝑐 = 𝑥 → ( 𝑌 = ( 𝑆 × { 𝑐 } ) ↔ 𝑌 = ( 𝑆 × { 𝑥 } ) ) ) |
| 117 |
116
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑐 } ) ↔ ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) |
| 118 |
113 117
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ↔ ∃ 𝑐 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑐 } ) ) ) |