| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvconstbi.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvconstbi.y | ⊢ ( 𝜑  →  𝑌 : 𝑆 ⟶ ℂ ) | 
						
							| 3 |  | dvconstbi.dy | ⊢ ( 𝜑  →  dom  ( 𝑆  D  𝑌 )  =  𝑆 ) | 
						
							| 4 |  | elpri | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ ) ) | 
						
							| 6 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 7 |  | eleq2 | ⊢ ( 𝑆  =  ℝ  →  ( 0  ∈  𝑆  ↔  0  ∈  ℝ ) ) | 
						
							| 8 | 6 7 | mpbiri | ⊢ ( 𝑆  =  ℝ  →  0  ∈  𝑆 ) | 
						
							| 9 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 10 |  | eleq2 | ⊢ ( 𝑆  =  ℂ  →  ( 0  ∈  𝑆  ↔  0  ∈  ℂ ) ) | 
						
							| 11 | 9 10 | mpbiri | ⊢ ( 𝑆  =  ℂ  →  0  ∈  𝑆 ) | 
						
							| 12 | 8 11 | jaoi | ⊢ ( ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ )  →  0  ∈  𝑆 ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  0  ∈  𝑆 ) | 
						
							| 14 |  | ffvelcdm | ⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ  ∧  0  ∈  𝑆 )  →  ( 𝑌 ‘ 0 )  ∈  ℂ ) | 
						
							| 15 | 2 13 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌 ‘ 0 )  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  ( 𝑌 ‘ 0 )  ∈  ℂ ) | 
						
							| 17 | 2 | ffnd | ⊢ ( 𝜑  →  𝑌  Fn  𝑆 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  𝑌  Fn  𝑆 ) | 
						
							| 19 |  | fvex | ⊢ ( 𝑌 ‘ 0 )  ∈  V | 
						
							| 20 |  | fnconstg | ⊢ ( ( 𝑌 ‘ 0 )  ∈  V  →  ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } )  Fn  𝑆 ) | 
						
							| 21 | 19 20 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } )  Fn  𝑆 ) | 
						
							| 22 | 19 | fvconst2 | ⊢ ( 𝑦  ∈  𝑆  →  ( ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 )  =  ( 𝑌 ‘ 0 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 )  =  ( 𝑌 ‘ 0 ) ) | 
						
							| 24 |  | eqid | ⊢ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) )  =  ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) | 
						
							| 25 | 1 24 | sblpnf | ⊢ ( ( 𝜑  ∧  0  ∈  𝑆 )  →  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  =  𝑆 ) | 
						
							| 26 | 13 25 | mpdan | ⊢ ( 𝜑  →  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  =  𝑆 ) | 
						
							| 27 | 26 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  ↔  𝑦  ∈  𝑆 ) ) | 
						
							| 28 | 27 | biimpar | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) ) | 
						
							| 29 | 13 26 | eleqtrrd | ⊢ ( 𝜑  →  0  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) ) | 
						
							| 30 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 31 |  | ssidd | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  𝑆  ⊆  𝑆 ) | 
						
							| 32 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  𝑌 : 𝑆 ⟶ ℂ ) | 
						
							| 33 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  0  ∈  𝑆 ) | 
						
							| 34 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  +∞  ∈  ℝ* ) | 
						
							| 36 |  | eqid | ⊢ ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  =  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) | 
						
							| 37 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  =  𝑆 ) | 
						
							| 38 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  dom  ( 𝑆  D  𝑌 )  =  𝑆 ) | 
						
							| 39 | 37 38 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  =  dom  ( 𝑆  D  𝑌 ) ) | 
						
							| 40 |  | eqimss | ⊢ ( ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  =  dom  ( 𝑆  D  𝑌 )  →  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  ⊆  dom  ( 𝑆  D  𝑌 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  ⊆  dom  ( 𝑆  D  𝑌 ) ) | 
						
							| 42 | 6 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  0  ∈  ℝ ) | 
						
							| 43 | 26 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  ↔  𝑥  ∈  𝑆 ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 45 | 44 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 46 |  | fveq1 | ⊢ ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  →  ( ( 𝑆  D  𝑌 ) ‘ 𝑥 )  =  ( ( 𝑆  ×  { 0 } ) ‘ 𝑥 ) ) | 
						
							| 47 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 48 | 47 | fvconst2 | ⊢ ( 𝑥  ∈  𝑆  →  ( ( 𝑆  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 49 | 46 48 | sylan9eq | ⊢ ( ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑆  D  𝑌 ) ‘ 𝑥 )  =  0 ) | 
						
							| 50 | 49 9 | eqeltrdi | ⊢ ( ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑆  D  𝑌 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 51 | 50 | abscld | ⊢ ( ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 52 | 49 | abs00bd | ⊢ ( ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  =  0 ) | 
						
							| 53 |  | eqle | ⊢ ( ( ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  ∈  ℝ  ∧  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  =  0 )  →  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 54 | 51 52 53 | syl2anc | ⊢ ( ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 55 | 54 | 3adant1 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 56 | 45 55 | syld3an3 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑥  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) )  →  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 57 | 56 | 3expa | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  ∧  𝑥  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) )  →  ( abs ‘ ( ( 𝑆  D  𝑌 ) ‘ 𝑥 ) )  ≤  0 ) | 
						
							| 58 | 30 24 31 32 33 35 36 41 42 57 | dvlip2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  ∧  ( 0  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ )  ∧  𝑦  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) ) )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) ) ) | 
						
							| 59 | 29 58 | sylanr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  ∧  ( 𝜑  ∧  𝑦  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) ) )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) ) ) | 
						
							| 60 | 59 | 3impdi | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  ( 0 ( ball ‘ ( ( abs  ∘   −  )  ↾  ( 𝑆  ×  𝑆 ) ) ) +∞ ) )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) ) ) | 
						
							| 61 | 28 60 | syl3an3 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  ( 𝜑  ∧  𝑦  ∈  𝑆 ) )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) ) ) | 
						
							| 62 | 61 | 3expa | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  ∧  ( 𝜑  ∧  𝑦  ∈  𝑆 ) )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) ) ) | 
						
							| 63 | 62 | 3impdi | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) ) ) | 
						
							| 64 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 65 | 1 64 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 66 | 65 | sseld | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  ℂ ) ) | 
						
							| 67 |  | subcl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 0  −  𝑦 )  ∈  ℂ ) | 
						
							| 68 | 67 | abscld | ⊢ ( ( 0  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( abs ‘ ( 0  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 69 | 9 68 | mpan | ⊢ ( 𝑦  ∈  ℂ  →  ( abs ‘ ( 0  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 70 | 66 69 | syl6 | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑆  →  ( abs ‘ ( 0  −  𝑦 ) )  ∈  ℝ ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( 0  −  𝑦 ) )  ∈  ℝ ) | 
						
							| 72 | 71 | recnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( 0  −  𝑦 ) )  ∈  ℂ ) | 
						
							| 73 | 72 | mul02d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) )  =  0 ) | 
						
							| 74 | 73 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( 0  ·  ( abs ‘ ( 0  −  𝑦 ) ) )  =  0 ) | 
						
							| 75 | 63 74 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  0 ) | 
						
							| 76 |  | ffvelcdm | ⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ  ∧  𝑦  ∈  𝑆 )  →  ( 𝑌 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 77 | 14 76 | anim12dan | ⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ  ∧  ( 0  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  ( 𝑌 ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 78 | 2 77 | sylan | ⊢ ( ( 𝜑  ∧  ( 0  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  ( 𝑌 ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 79 | 78 | 3impb | ⊢ ( ( 𝜑  ∧  0  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  ( 𝑌 ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 80 | 13 79 | syl3an2 | ⊢ ( ( 𝜑  ∧  𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  ( 𝑌 ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 81 | 80 | 3anidm12 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  ( 𝑌 ‘ 𝑦 )  ∈  ℂ ) ) | 
						
							| 82 |  | subcl | ⊢ ( ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  ( 𝑌 ‘ 𝑦 )  ∈  ℂ )  →  ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 84 | 83 | absge0d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  0  ≤  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) ) ) | 
						
							| 85 | 84 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  0  ≤  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) ) ) | 
						
							| 86 | 83 | abscld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 87 |  | letri3 | ⊢ ( ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  =  0  ↔  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 88 | 86 6 87 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  =  0  ↔  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 89 | 88 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  =  0  ↔  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 90 | 75 85 89 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  =  0 ) | 
						
							| 91 | 83 | abs00ad | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  =  0  ↔  ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  =  0 ) ) | 
						
							| 92 | 91 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( ( abs ‘ ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) ) )  =  0  ↔  ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  =  0 ) ) | 
						
							| 93 | 90 92 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  =  0 ) | 
						
							| 94 |  | subeq0 | ⊢ ( ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  ( 𝑌 ‘ 𝑦 )  ∈  ℂ )  →  ( ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  =  0  ↔  ( 𝑌 ‘ 0 )  =  ( 𝑌 ‘ 𝑦 ) ) ) | 
						
							| 95 | 81 94 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  =  0  ↔  ( 𝑌 ‘ 0 )  =  ( 𝑌 ‘ 𝑦 ) ) ) | 
						
							| 96 | 95 | 3adant2 | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝑌 ‘ 0 )  −  ( 𝑌 ‘ 𝑦 ) )  =  0  ↔  ( 𝑌 ‘ 0 )  =  ( 𝑌 ‘ 𝑦 ) ) ) | 
						
							| 97 | 93 96 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑌 ‘ 0 )  =  ( 𝑌 ‘ 𝑦 ) ) | 
						
							| 98 | 97 | 3expa | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑌 ‘ 0 )  =  ( 𝑌 ‘ 𝑦 ) ) | 
						
							| 99 | 23 98 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑌 ‘ 𝑦 )  =  ( ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 ) ) | 
						
							| 100 | 18 21 99 | eqfnfvd | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  𝑌  =  ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } ) ) | 
						
							| 101 |  | sneq | ⊢ ( 𝑥  =  ( 𝑌 ‘ 0 )  →  { 𝑥 }  =  { ( 𝑌 ‘ 0 ) } ) | 
						
							| 102 | 101 | xpeq2d | ⊢ ( 𝑥  =  ( 𝑌 ‘ 0 )  →  ( 𝑆  ×  { 𝑥 } )  =  ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } ) ) | 
						
							| 103 | 102 | rspceeqv | ⊢ ( ( ( 𝑌 ‘ 0 )  ∈  ℂ  ∧  𝑌  =  ( 𝑆  ×  { ( 𝑌 ‘ 0 ) } ) )  →  ∃ 𝑥  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑥 } ) ) | 
						
							| 104 | 16 100 103 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) )  →  ∃ 𝑥  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑥 } ) ) | 
						
							| 105 | 104 | ex | ⊢ ( 𝜑  →  ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  →  ∃ 𝑥  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑥 } ) ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( 𝑌  =  ( 𝑆  ×  { 𝑥 } )  →  ( 𝑆  D  𝑌 )  =  ( 𝑆  D  ( 𝑆  ×  { 𝑥 } ) ) ) | 
						
							| 107 | 106 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  𝑌  =  ( 𝑆  ×  { 𝑥 } ) )  →  ( 𝑆  D  𝑌 )  =  ( 𝑆  D  ( 𝑆  ×  { 𝑥 } ) ) ) | 
						
							| 108 |  | dvsconst | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝑥  ∈  ℂ )  →  ( 𝑆  D  ( 𝑆  ×  { 𝑥 } ) )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 109 | 1 108 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 𝑆  D  ( 𝑆  ×  { 𝑥 } ) )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 110 | 109 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  𝑌  =  ( 𝑆  ×  { 𝑥 } ) )  →  ( 𝑆  D  ( 𝑆  ×  { 𝑥 } ) )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 111 | 107 110 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ  ∧  𝑌  =  ( 𝑆  ×  { 𝑥 } ) )  →  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) ) | 
						
							| 112 | 111 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑥 } )  →  ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } ) ) ) | 
						
							| 113 | 105 112 | impbid | ⊢ ( 𝜑  →  ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ↔  ∃ 𝑥  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑥 } ) ) ) | 
						
							| 114 |  | sneq | ⊢ ( 𝑐  =  𝑥  →  { 𝑐 }  =  { 𝑥 } ) | 
						
							| 115 | 114 | xpeq2d | ⊢ ( 𝑐  =  𝑥  →  ( 𝑆  ×  { 𝑐 } )  =  ( 𝑆  ×  { 𝑥 } ) ) | 
						
							| 116 | 115 | eqeq2d | ⊢ ( 𝑐  =  𝑥  →  ( 𝑌  =  ( 𝑆  ×  { 𝑐 } )  ↔  𝑌  =  ( 𝑆  ×  { 𝑥 } ) ) ) | 
						
							| 117 | 116 | cbvrexvw | ⊢ ( ∃ 𝑐  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑐 } )  ↔  ∃ 𝑥  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑥 } ) ) | 
						
							| 118 | 113 117 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑆  D  𝑌 )  =  ( 𝑆  ×  { 0 } )  ↔  ∃ 𝑐  ∈  ℂ 𝑌  =  ( 𝑆  ×  { 𝑐 } ) ) ) |