Step |
Hyp |
Ref |
Expression |
1 |
|
dvconstbi.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
dvconstbi.y |
⊢ ( 𝜑 → 𝑌 : 𝑆 ⟶ ℂ ) |
3 |
|
dvconstbi.dy |
⊢ ( 𝜑 → dom ( 𝑆 D 𝑌 ) = 𝑆 ) |
4 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
6 |
|
0re |
⊢ 0 ∈ ℝ |
7 |
|
eleq2 |
⊢ ( 𝑆 = ℝ → ( 0 ∈ 𝑆 ↔ 0 ∈ ℝ ) ) |
8 |
6 7
|
mpbiri |
⊢ ( 𝑆 = ℝ → 0 ∈ 𝑆 ) |
9 |
|
0cn |
⊢ 0 ∈ ℂ |
10 |
|
eleq2 |
⊢ ( 𝑆 = ℂ → ( 0 ∈ 𝑆 ↔ 0 ∈ ℂ ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝑆 = ℂ → 0 ∈ 𝑆 ) |
12 |
8 11
|
jaoi |
⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 0 ∈ 𝑆 ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
14 |
|
ffvelrn |
⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ ∧ 0 ∈ 𝑆 ) → ( 𝑌 ‘ 0 ) ∈ ℂ ) |
15 |
2 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ‘ 0 ) ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 𝑌 ‘ 0 ) ∈ ℂ ) |
17 |
2
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn 𝑆 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑌 Fn 𝑆 ) |
19 |
|
fvex |
⊢ ( 𝑌 ‘ 0 ) ∈ V |
20 |
|
fnconstg |
⊢ ( ( 𝑌 ‘ 0 ) ∈ V → ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) Fn 𝑆 ) |
21 |
19 20
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) Fn 𝑆 ) |
22 |
19
|
fvconst2 |
⊢ ( 𝑦 ∈ 𝑆 → ( ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 ) = ( 𝑌 ‘ 0 ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 ) = ( 𝑌 ‘ 0 ) ) |
24 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) |
25 |
1 24
|
sblpnf |
⊢ ( ( 𝜑 ∧ 0 ∈ 𝑆 ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = 𝑆 ) |
26 |
13 25
|
mpdan |
⊢ ( 𝜑 → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = 𝑆 ) |
27 |
26
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ↔ 𝑦 ∈ 𝑆 ) ) |
28 |
27
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) |
29 |
13 26
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) |
30 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
31 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑆 ⊆ 𝑆 ) |
32 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑌 : 𝑆 ⟶ ℂ ) |
33 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 0 ∈ 𝑆 ) |
34 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → +∞ ∈ ℝ* ) |
36 |
|
eqid |
⊢ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) |
37 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = 𝑆 ) |
38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → dom ( 𝑆 D 𝑌 ) = 𝑆 ) |
39 |
37 38
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = dom ( 𝑆 D 𝑌 ) ) |
40 |
|
eqimss |
⊢ ( ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) = dom ( 𝑆 D 𝑌 ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ⊆ dom ( 𝑆 D 𝑌 ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ⊆ dom ( 𝑆 D 𝑌 ) ) |
42 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 0 ∈ ℝ ) |
43 |
26
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ↔ 𝑥 ∈ 𝑆 ) ) |
44 |
43
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → 𝑥 ∈ 𝑆 ) |
45 |
44
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → 𝑥 ∈ 𝑆 ) |
46 |
|
fveq1 |
⊢ ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) → ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) = ( ( 𝑆 × { 0 } ) ‘ 𝑥 ) ) |
47 |
|
c0ex |
⊢ 0 ∈ V |
48 |
47
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑆 × { 0 } ) ‘ 𝑥 ) = 0 ) |
49 |
46 48
|
sylan9eq |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) = 0 ) |
50 |
49 9
|
eqeltrdi |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ∈ ℂ ) |
51 |
50
|
abscld |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ∈ ℝ ) |
52 |
49
|
abs00bd |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) = 0 ) |
53 |
|
eqle |
⊢ ( ( ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ∈ ℝ ∧ ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) = 0 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
54 |
51 52 53
|
syl2anc |
⊢ ( ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
55 |
54
|
3adant1 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
56 |
45 55
|
syld3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
57 |
56
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑥 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → ( abs ‘ ( ( 𝑆 D 𝑌 ) ‘ 𝑥 ) ) ≤ 0 ) |
58 |
30 24 31 32 33 35 36 41 42 57
|
dvlip2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ ( 0 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ∧ 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
59 |
29 58
|
sylanr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ ( 𝜑 ∧ 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
60 |
59
|
3impdi |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ ( 0 ( ball ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) +∞ ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
61 |
28 60
|
syl3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
62 |
61
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
63 |
62
|
3impdi |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) ) |
64 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
65 |
1 64
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
66 |
65
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) ) |
67 |
|
subcl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 − 𝑦 ) ∈ ℂ ) |
68 |
67
|
abscld |
⊢ ( ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) |
69 |
9 68
|
mpan |
⊢ ( 𝑦 ∈ ℂ → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) |
70 |
66 69
|
syl6 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) ) |
71 |
70
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℝ ) |
72 |
71
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( 0 − 𝑦 ) ) ∈ ℂ ) |
73 |
72
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) = 0 ) |
74 |
73
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( 0 · ( abs ‘ ( 0 − 𝑦 ) ) ) = 0 ) |
75 |
63 74
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ) |
76 |
|
ffvelrn |
⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) |
77 |
14 76
|
anim12dan |
⊢ ( ( 𝑌 : 𝑆 ⟶ ℂ ∧ ( 0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
78 |
2 77
|
sylan |
⊢ ( ( 𝜑 ∧ ( 0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
79 |
78
|
3impb |
⊢ ( ( 𝜑 ∧ 0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
80 |
13 79
|
syl3an2 |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
81 |
80
|
3anidm12 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) ) |
82 |
|
subcl |
⊢ ( ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) → ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ∈ ℂ ) |
83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ∈ ℂ ) |
84 |
83
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) |
85 |
84
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) |
86 |
83
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ∈ ℝ ) |
87 |
|
letri3 |
⊢ ( ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) |
88 |
86 6 87
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) |
89 |
88
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) ) ) ) |
90 |
75 85 89
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ) |
91 |
83
|
abs00ad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ) ) |
92 |
91
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ) ) |
93 |
90 92
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ) |
94 |
|
subeq0 |
⊢ ( ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑦 ) ∈ ℂ ) → ( ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ↔ ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
95 |
81 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ↔ ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
96 |
95
|
3adant2 |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 0 ) − ( 𝑌 ‘ 𝑦 ) ) = 0 ↔ ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
97 |
93 96
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) |
98 |
97
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 0 ) = ( 𝑌 ‘ 𝑦 ) ) |
99 |
23 98
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑦 ) = ( ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ‘ 𝑦 ) ) |
100 |
18 21 99
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → 𝑌 = ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ) |
101 |
|
sneq |
⊢ ( 𝑥 = ( 𝑌 ‘ 0 ) → { 𝑥 } = { ( 𝑌 ‘ 0 ) } ) |
102 |
101
|
xpeq2d |
⊢ ( 𝑥 = ( 𝑌 ‘ 0 ) → ( 𝑆 × { 𝑥 } ) = ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ) |
103 |
102
|
rspceeqv |
⊢ ( ( ( 𝑌 ‘ 0 ) ∈ ℂ ∧ 𝑌 = ( 𝑆 × { ( 𝑌 ‘ 0 ) } ) ) → ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) |
104 |
16 100 103
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) → ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) |
105 |
104
|
ex |
⊢ ( 𝜑 → ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) → ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) ) |
106 |
|
oveq2 |
⊢ ( 𝑌 = ( 𝑆 × { 𝑥 } ) → ( 𝑆 D 𝑌 ) = ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) ) |
107 |
106
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = ( 𝑆 × { 𝑥 } ) ) → ( 𝑆 D 𝑌 ) = ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) ) |
108 |
|
dvsconst |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑥 ∈ ℂ ) → ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) = ( 𝑆 × { 0 } ) ) |
109 |
1 108
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) = ( 𝑆 × { 0 } ) ) |
110 |
109
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = ( 𝑆 × { 𝑥 } ) ) → ( 𝑆 D ( 𝑆 × { 𝑥 } ) ) = ( 𝑆 × { 0 } ) ) |
111 |
107 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = ( 𝑆 × { 𝑥 } ) ) → ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) |
112 |
111
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) → ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ) ) |
113 |
105 112
|
impbid |
⊢ ( 𝜑 → ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ↔ ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) ) |
114 |
|
sneq |
⊢ ( 𝑐 = 𝑥 → { 𝑐 } = { 𝑥 } ) |
115 |
114
|
xpeq2d |
⊢ ( 𝑐 = 𝑥 → ( 𝑆 × { 𝑐 } ) = ( 𝑆 × { 𝑥 } ) ) |
116 |
115
|
eqeq2d |
⊢ ( 𝑐 = 𝑥 → ( 𝑌 = ( 𝑆 × { 𝑐 } ) ↔ 𝑌 = ( 𝑆 × { 𝑥 } ) ) ) |
117 |
116
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑐 } ) ↔ ∃ 𝑥 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑥 } ) ) |
118 |
113 117
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑆 D 𝑌 ) = ( 𝑆 × { 0 } ) ↔ ∃ 𝑐 ∈ ℂ 𝑌 = ( 𝑆 × { 𝑐 } ) ) ) |