Metamath Proof Explorer


Theorem dvconstbi

Description: The derivative of a function on S is zero iff it is a constant function. Roughly a biconditional S analogue of dvconst and dveq0 . Corresponds to integration formula " S. 0 _d x = C " in section 4.1 of LarsonHostetlerEdwards p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015)

Ref Expression
Hypotheses dvconstbi.s φS
dvconstbi.y φY:S
dvconstbi.dy φdomYS=S
Assertion dvconstbi φSDY=S×0cY=S×c

Proof

Step Hyp Ref Expression
1 dvconstbi.s φS
2 dvconstbi.y φY:S
3 dvconstbi.dy φdomYS=S
4 elpri SS=S=
5 1 4 syl φS=S=
6 0re 0
7 eleq2 S=0S0
8 6 7 mpbiri S=0S
9 0cn 0
10 eleq2 S=0S0
11 9 10 mpbiri S=0S
12 8 11 jaoi S=S=0S
13 5 12 syl φ0S
14 ffvelcdm Y:S0SY0
15 2 13 14 syl2anc φY0
16 15 adantr φSDY=S×0Y0
17 2 ffnd φYFnS
18 17 adantr φSDY=S×0YFnS
19 fvex Y0V
20 fnconstg Y0VS×Y0FnS
21 19 20 mp1i φSDY=S×0S×Y0FnS
22 19 fvconst2 ySS×Y0y=Y0
23 22 adantl φSDY=S×0ySS×Y0y=Y0
24 eqid absS×S=absS×S
25 1 24 sblpnf φ0S0ballabsS×S+∞=S
26 13 25 mpdan φ0ballabsS×S+∞=S
27 26 eleq2d φy0ballabsS×S+∞yS
28 27 biimpar φySy0ballabsS×S+∞
29 13 26 eleqtrrd φ00ballabsS×S+∞
30 1 adantr φSDY=S×0S
31 ssidd φSDY=S×0SS
32 2 adantr φSDY=S×0Y:S
33 13 adantr φSDY=S×00S
34 pnfxr +∞*
35 34 a1i φSDY=S×0+∞*
36 eqid 0ballabsS×S+∞=0ballabsS×S+∞
37 26 adantr φSDY=S×00ballabsS×S+∞=S
38 3 adantr φSDY=S×0domYS=S
39 37 38 eqtr4d φSDY=S×00ballabsS×S+∞=domYS
40 eqimss 0ballabsS×S+∞=domYS0ballabsS×S+∞domYS
41 39 40 syl φSDY=S×00ballabsS×S+∞domYS
42 6 a1i φSDY=S×00
43 26 eleq2d φx0ballabsS×S+∞xS
44 43 biimpa φx0ballabsS×S+∞xS
45 44 3adant2 φSDY=S×0x0ballabsS×S+∞xS
46 fveq1 SDY=S×0YSx=S×0x
47 c0ex 0V
48 47 fvconst2 xSS×0x=0
49 46 48 sylan9eq SDY=S×0xSYSx=0
50 49 9 eqeltrdi SDY=S×0xSYSx
51 50 abscld SDY=S×0xSYSx
52 49 abs00bd SDY=S×0xSYSx=0
53 eqle YSxYSx=0YSx0
54 51 52 53 syl2anc SDY=S×0xSYSx0
55 54 3adant1 φSDY=S×0xSYSx0
56 45 55 syld3an3 φSDY=S×0x0ballabsS×S+∞YSx0
57 56 3expa φSDY=S×0x0ballabsS×S+∞YSx0
58 30 24 31 32 33 35 36 41 42 57 dvlip2 φSDY=S×000ballabsS×S+∞y0ballabsS×S+∞Y0Yy00y
59 29 58 sylanr1 φSDY=S×0φy0ballabsS×S+∞Y0Yy00y
60 59 3impdi φSDY=S×0y0ballabsS×S+∞Y0Yy00y
61 28 60 syl3an3 φSDY=S×0φySY0Yy00y
62 61 3expa φSDY=S×0φySY0Yy00y
63 62 3impdi φSDY=S×0ySY0Yy00y
64 recnprss SS
65 1 64 syl φS
66 65 sseld φySy
67 subcl 0y0y
68 67 abscld 0y0y
69 9 68 mpan y0y
70 66 69 syl6 φyS0y
71 70 imp φyS0y
72 71 recnd φyS0y
73 72 mul02d φyS00y=0
74 73 3adant2 φSDY=S×0yS00y=0
75 63 74 breqtrd φSDY=S×0ySY0Yy0
76 ffvelcdm Y:SySYy
77 14 76 anim12dan Y:S0SySY0Yy
78 2 77 sylan φ0SySY0Yy
79 78 3impb φ0SySY0Yy
80 13 79 syl3an2 φφySY0Yy
81 80 3anidm12 φySY0Yy
82 subcl Y0YyY0Yy
83 81 82 syl φySY0Yy
84 83 absge0d φyS0Y0Yy
85 84 3adant2 φSDY=S×0yS0Y0Yy
86 83 abscld φySY0Yy
87 letri3 Y0Yy0Y0Yy=0Y0Yy00Y0Yy
88 86 6 87 sylancl φySY0Yy=0Y0Yy00Y0Yy
89 88 3adant2 φSDY=S×0ySY0Yy=0Y0Yy00Y0Yy
90 75 85 89 mpbir2and φSDY=S×0ySY0Yy=0
91 83 abs00ad φySY0Yy=0Y0Yy=0
92 91 3adant2 φSDY=S×0ySY0Yy=0Y0Yy=0
93 90 92 mpbid φSDY=S×0ySY0Yy=0
94 subeq0 Y0YyY0Yy=0Y0=Yy
95 81 94 syl φySY0Yy=0Y0=Yy
96 95 3adant2 φSDY=S×0ySY0Yy=0Y0=Yy
97 93 96 mpbid φSDY=S×0ySY0=Yy
98 97 3expa φSDY=S×0ySY0=Yy
99 23 98 eqtr2d φSDY=S×0ySYy=S×Y0y
100 18 21 99 eqfnfvd φSDY=S×0Y=S×Y0
101 sneq x=Y0x=Y0
102 101 xpeq2d x=Y0S×x=S×Y0
103 102 rspceeqv Y0Y=S×Y0xY=S×x
104 16 100 103 syl2anc φSDY=S×0xY=S×x
105 104 ex φSDY=S×0xY=S×x
106 oveq2 Y=S×xSDY=SDS×x
107 106 3ad2ant3 φxY=S×xSDY=SDS×x
108 dvsconst SxSDS×x=S×0
109 1 108 sylan φxSDS×x=S×0
110 109 3adant3 φxY=S×xSDS×x=S×0
111 107 110 eqtrd φxY=S×xSDY=S×0
112 111 rexlimdv3a φxY=S×xSDY=S×0
113 105 112 impbid φSDY=S×0xY=S×x
114 sneq c=xc=x
115 114 xpeq2d c=xS×c=S×x
116 115 eqeq2d c=xY=S×cY=S×x
117 116 cbvrexvw cY=S×cxY=S×x
118 113 117 bitr4di φSDY=S×0cY=S×c