Metamath Proof Explorer


Theorem dvsconst

Description: Derivative of a constant function on the real or complex numbers. The function may return a complex A even if S is RR . (Contributed by Steve Rodriguez, 11-Nov-2015)

Ref Expression
Assertion dvsconst SASDS×A=S×0

Proof

Step Hyp Ref Expression
1 fconst6g A×A:
2 1 anim2i SAS×A:
3 recnprss SS
4 c0ex 0V
5 4 fconst ×0:0
6 5 fdmi dom×0=
7 3 6 sseqtrrdi SSdom×0
8 7 adantr SASdom×0
9 dvconst AD×A=×0
10 9 adantl SAD×A=×0
11 10 dmeqd SAdom×A=dom×0
12 8 11 sseqtrrd SASdom×A
13 ssid
14 12 13 jctil SASdom×A
15 dvres3 S×A:Sdom×ASD×AS=×AS
16 2 14 15 syl2anc SASD×AS=×AS
17 xpssres S×AS=S×A
18 3 17 syl S×AS=S×A
19 18 oveq2d SSD×AS=SDS×A
20 19 adantr SASD×AS=SDS×A
21 10 reseq1d SA×AS=×0S
22 xpssres S×0S=S×0
23 3 22 syl S×0S=S×0
24 23 adantr SA×0S=S×0
25 21 24 eqtrd SA×AS=S×0
26 16 20 25 3eqtr3d SASDS×A=S×0