Step |
Hyp |
Ref |
Expression |
1 |
|
fconst6g |
|- ( A e. CC -> ( CC X. { A } ) : CC --> CC ) |
2 |
1
|
anim2i |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) ) |
3 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
4 |
|
c0ex |
|- 0 e. _V |
5 |
4
|
fconst |
|- ( CC X. { 0 } ) : CC --> { 0 } |
6 |
5
|
fdmi |
|- dom ( CC X. { 0 } ) = CC |
7 |
3 6
|
sseqtrrdi |
|- ( S e. { RR , CC } -> S C_ dom ( CC X. { 0 } ) ) |
8 |
7
|
adantr |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> S C_ dom ( CC X. { 0 } ) ) |
9 |
|
dvconst |
|- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
10 |
9
|
adantl |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
11 |
10
|
dmeqd |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> dom ( CC _D ( CC X. { A } ) ) = dom ( CC X. { 0 } ) ) |
12 |
8 11
|
sseqtrrd |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> S C_ dom ( CC _D ( CC X. { A } ) ) ) |
13 |
|
ssid |
|- CC C_ CC |
14 |
12 13
|
jctil |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) |
15 |
|
dvres3 |
|- ( ( ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
16 |
2 14 15
|
syl2anc |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
17 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
18 |
3 17
|
syl |
|- ( S e. { RR , CC } -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
19 |
18
|
oveq2d |
|- ( S e. { RR , CC } -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) |
20 |
19
|
adantr |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) |
21 |
10
|
reseq1d |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( ( CC X. { 0 } ) |` S ) ) |
22 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
23 |
3 22
|
syl |
|- ( S e. { RR , CC } -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
24 |
23
|
adantr |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
25 |
21 24
|
eqtrd |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( S X. { 0 } ) ) |
26 |
16 20 25
|
3eqtr3d |
|- ( ( S e. { RR , CC } /\ A e. CC ) -> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |