| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst6g |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
| 2 |
1
|
anim2i |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) ) |
| 3 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 4 |
|
c0ex |
⊢ 0 ∈ V |
| 5 |
4
|
fconst |
⊢ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } |
| 6 |
5
|
fdmi |
⊢ dom ( ℂ × { 0 } ) = ℂ |
| 7 |
3 6
|
sseqtrrdi |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ dom ( ℂ × { 0 } ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → 𝑆 ⊆ dom ( ℂ × { 0 } ) ) |
| 9 |
|
dvconst |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 11 |
10
|
dmeqd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = dom ( ℂ × { 0 } ) ) |
| 12 |
8 11
|
sseqtrrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) |
| 13 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 14 |
12 13
|
jctil |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) ) |
| 15 |
|
dvres3 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) ) → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
| 16 |
2 14 15
|
syl2anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
| 17 |
|
xpssres |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
| 18 |
3 17
|
syl |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
| 21 |
10
|
reseq1d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( ( ℂ × { 0 } ) ↾ 𝑆 ) ) |
| 22 |
|
xpssres |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 23 |
3 22
|
syl |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 25 |
21 24
|
eqtrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 26 |
16 20 25
|
3eqtr3d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐴 ∈ ℂ ) → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑆 × { 0 } ) ) |