| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnresi |
⊢ ( I ↾ ℂ ) Fn ℂ |
| 2 |
|
rnresi |
⊢ ran ( I ↾ ℂ ) = ℂ |
| 3 |
2
|
eqimssi |
⊢ ran ( I ↾ ℂ ) ⊆ ℂ |
| 4 |
|
df-f |
⊢ ( ( I ↾ ℂ ) : ℂ ⟶ ℂ ↔ ( ( I ↾ ℂ ) Fn ℂ ∧ ran ( I ↾ ℂ ) ⊆ ℂ ) ) |
| 5 |
1 3 4
|
mpbir2an |
⊢ ( I ↾ ℂ ) : ℂ ⟶ ℂ |
| 6 |
5
|
jctr |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 ∈ { ℝ , ℂ } ∧ ( I ↾ ℂ ) : ℂ ⟶ ℂ ) ) |
| 7 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 8 |
|
dvid |
⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) |
| 9 |
8
|
dmeqi |
⊢ dom ( ℂ D ( I ↾ ℂ ) ) = dom ( ℂ × { 1 } ) |
| 10 |
|
1ex |
⊢ 1 ∈ V |
| 11 |
10
|
fconst |
⊢ ( ℂ × { 1 } ) : ℂ ⟶ { 1 } |
| 12 |
11
|
fdmi |
⊢ dom ( ℂ × { 1 } ) = ℂ |
| 13 |
9 12
|
eqtri |
⊢ dom ( ℂ D ( I ↾ ℂ ) ) = ℂ |
| 14 |
7 13
|
sseqtrrdi |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ dom ( ℂ D ( I ↾ ℂ ) ) ) |
| 15 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 16 |
14 15
|
jctil |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( I ↾ ℂ ) ) ) ) |
| 17 |
|
dvres3 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( I ↾ ℂ ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( I ↾ ℂ ) ) ) ) → ( 𝑆 D ( ( I ↾ ℂ ) ↾ 𝑆 ) ) = ( ( ℂ D ( I ↾ ℂ ) ) ↾ 𝑆 ) ) |
| 18 |
6 16 17
|
syl2anc |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( ( I ↾ ℂ ) ↾ 𝑆 ) ) = ( ( ℂ D ( I ↾ ℂ ) ) ↾ 𝑆 ) ) |
| 19 |
7
|
resabs1d |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ( I ↾ ℂ ) ↾ 𝑆 ) = ( I ↾ 𝑆 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( ( I ↾ ℂ ) ↾ 𝑆 ) ) = ( 𝑆 D ( I ↾ 𝑆 ) ) ) |
| 21 |
8
|
reseq1i |
⊢ ( ( ℂ D ( I ↾ ℂ ) ) ↾ 𝑆 ) = ( ( ℂ × { 1 } ) ↾ 𝑆 ) |
| 22 |
|
xpssres |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 1 } ) ↾ 𝑆 ) = ( 𝑆 × { 1 } ) ) |
| 23 |
21 22
|
eqtrid |
⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ D ( I ↾ ℂ ) ) ↾ 𝑆 ) = ( 𝑆 × { 1 } ) ) |
| 24 |
7 23
|
syl |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ( ℂ D ( I ↾ ℂ ) ) ↾ 𝑆 ) = ( 𝑆 × { 1 } ) ) |
| 25 |
18 20 24
|
3eqtr3d |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( I ↾ 𝑆 ) ) = ( 𝑆 × { 1 } ) ) |