| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnresi | ⊢ (  I   ↾  ℂ )  Fn  ℂ | 
						
							| 2 |  | rnresi | ⊢ ran  (  I   ↾  ℂ )  =  ℂ | 
						
							| 3 | 2 | eqimssi | ⊢ ran  (  I   ↾  ℂ )  ⊆  ℂ | 
						
							| 4 |  | df-f | ⊢ ( (  I   ↾  ℂ ) : ℂ ⟶ ℂ  ↔  ( (  I   ↾  ℂ )  Fn  ℂ  ∧  ran  (  I   ↾  ℂ )  ⊆  ℂ ) ) | 
						
							| 5 | 1 3 4 | mpbir2an | ⊢ (  I   ↾  ℂ ) : ℂ ⟶ ℂ | 
						
							| 6 | 5 | jctr | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  (  I   ↾  ℂ ) : ℂ ⟶ ℂ ) ) | 
						
							| 7 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 8 |  | dvid | ⊢ ( ℂ  D  (  I   ↾  ℂ ) )  =  ( ℂ  ×  { 1 } ) | 
						
							| 9 | 8 | dmeqi | ⊢ dom  ( ℂ  D  (  I   ↾  ℂ ) )  =  dom  ( ℂ  ×  { 1 } ) | 
						
							| 10 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 11 | 10 | fconst | ⊢ ( ℂ  ×  { 1 } ) : ℂ ⟶ { 1 } | 
						
							| 12 | 11 | fdmi | ⊢ dom  ( ℂ  ×  { 1 } )  =  ℂ | 
						
							| 13 | 9 12 | eqtri | ⊢ dom  ( ℂ  D  (  I   ↾  ℂ ) )  =  ℂ | 
						
							| 14 | 7 13 | sseqtrrdi | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  dom  ( ℂ  D  (  I   ↾  ℂ ) ) ) | 
						
							| 15 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 16 | 14 15 | jctil | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( ℂ  ⊆  ℂ  ∧  𝑆  ⊆  dom  ( ℂ  D  (  I   ↾  ℂ ) ) ) ) | 
						
							| 17 |  | dvres3 | ⊢ ( ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  (  I   ↾  ℂ ) : ℂ ⟶ ℂ )  ∧  ( ℂ  ⊆  ℂ  ∧  𝑆  ⊆  dom  ( ℂ  D  (  I   ↾  ℂ ) ) ) )  →  ( 𝑆  D  ( (  I   ↾  ℂ )  ↾  𝑆 ) )  =  ( ( ℂ  D  (  I   ↾  ℂ ) )  ↾  𝑆 ) ) | 
						
							| 18 | 6 16 17 | syl2anc | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  D  ( (  I   ↾  ℂ )  ↾  𝑆 ) )  =  ( ( ℂ  D  (  I   ↾  ℂ ) )  ↾  𝑆 ) ) | 
						
							| 19 | 7 | resabs1d | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( (  I   ↾  ℂ )  ↾  𝑆 )  =  (  I   ↾  𝑆 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  D  ( (  I   ↾  ℂ )  ↾  𝑆 ) )  =  ( 𝑆  D  (  I   ↾  𝑆 ) ) ) | 
						
							| 21 | 8 | reseq1i | ⊢ ( ( ℂ  D  (  I   ↾  ℂ ) )  ↾  𝑆 )  =  ( ( ℂ  ×  { 1 } )  ↾  𝑆 ) | 
						
							| 22 |  | xpssres | ⊢ ( 𝑆  ⊆  ℂ  →  ( ( ℂ  ×  { 1 } )  ↾  𝑆 )  =  ( 𝑆  ×  { 1 } ) ) | 
						
							| 23 | 21 22 | eqtrid | ⊢ ( 𝑆  ⊆  ℂ  →  ( ( ℂ  D  (  I   ↾  ℂ ) )  ↾  𝑆 )  =  ( 𝑆  ×  { 1 } ) ) | 
						
							| 24 | 7 23 | syl | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( ( ℂ  D  (  I   ↾  ℂ ) )  ↾  𝑆 )  =  ( 𝑆  ×  { 1 } ) ) | 
						
							| 25 | 18 20 24 | 3eqtr3d | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  D  (  I   ↾  𝑆 ) )  =  ( 𝑆  ×  { 1 } ) ) |