Step |
Hyp |
Ref |
Expression |
1 |
|
fnresi |
|- ( _I |` CC ) Fn CC |
2 |
|
rnresi |
|- ran ( _I |` CC ) = CC |
3 |
2
|
eqimssi |
|- ran ( _I |` CC ) C_ CC |
4 |
|
df-f |
|- ( ( _I |` CC ) : CC --> CC <-> ( ( _I |` CC ) Fn CC /\ ran ( _I |` CC ) C_ CC ) ) |
5 |
1 3 4
|
mpbir2an |
|- ( _I |` CC ) : CC --> CC |
6 |
5
|
jctr |
|- ( S e. { RR , CC } -> ( S e. { RR , CC } /\ ( _I |` CC ) : CC --> CC ) ) |
7 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
8 |
|
dvid |
|- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |
9 |
8
|
dmeqi |
|- dom ( CC _D ( _I |` CC ) ) = dom ( CC X. { 1 } ) |
10 |
|
1ex |
|- 1 e. _V |
11 |
10
|
fconst |
|- ( CC X. { 1 } ) : CC --> { 1 } |
12 |
11
|
fdmi |
|- dom ( CC X. { 1 } ) = CC |
13 |
9 12
|
eqtri |
|- dom ( CC _D ( _I |` CC ) ) = CC |
14 |
7 13
|
sseqtrrdi |
|- ( S e. { RR , CC } -> S C_ dom ( CC _D ( _I |` CC ) ) ) |
15 |
|
ssid |
|- CC C_ CC |
16 |
14 15
|
jctil |
|- ( S e. { RR , CC } -> ( CC C_ CC /\ S C_ dom ( CC _D ( _I |` CC ) ) ) ) |
17 |
|
dvres3 |
|- ( ( ( S e. { RR , CC } /\ ( _I |` CC ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( _I |` CC ) ) ) ) -> ( S _D ( ( _I |` CC ) |` S ) ) = ( ( CC _D ( _I |` CC ) ) |` S ) ) |
18 |
6 16 17
|
syl2anc |
|- ( S e. { RR , CC } -> ( S _D ( ( _I |` CC ) |` S ) ) = ( ( CC _D ( _I |` CC ) ) |` S ) ) |
19 |
7
|
resabs1d |
|- ( S e. { RR , CC } -> ( ( _I |` CC ) |` S ) = ( _I |` S ) ) |
20 |
19
|
oveq2d |
|- ( S e. { RR , CC } -> ( S _D ( ( _I |` CC ) |` S ) ) = ( S _D ( _I |` S ) ) ) |
21 |
8
|
reseq1i |
|- ( ( CC _D ( _I |` CC ) ) |` S ) = ( ( CC X. { 1 } ) |` S ) |
22 |
|
xpssres |
|- ( S C_ CC -> ( ( CC X. { 1 } ) |` S ) = ( S X. { 1 } ) ) |
23 |
21 22
|
eqtrid |
|- ( S C_ CC -> ( ( CC _D ( _I |` CC ) ) |` S ) = ( S X. { 1 } ) ) |
24 |
7 23
|
syl |
|- ( S e. { RR , CC } -> ( ( CC _D ( _I |` CC ) ) |` S ) = ( S X. { 1 } ) ) |
25 |
18 20 24
|
3eqtr3d |
|- ( S e. { RR , CC } -> ( S _D ( _I |` S ) ) = ( S X. { 1 } ) ) |