Metamath Proof Explorer


Theorem dveq0

Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014) (Proof shortened by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses dveq0.a φA
dveq0.b φB
dveq0.c φF:ABcn
dveq0.d φDF=AB×0
Assertion dveq0 φF=AB×FA

Proof

Step Hyp Ref Expression
1 dveq0.a φA
2 dveq0.b φB
3 dveq0.c φF:ABcn
4 dveq0.d φDF=AB×0
5 cncff F:ABcnF:AB
6 3 5 syl φF:AB
7 6 ffnd φFFnAB
8 fvex FAV
9 fnconstg FAVAB×FAFnAB
10 8 9 mp1i φAB×FAFnAB
11 8 fvconst2 xABAB×FAx=FA
12 11 adantl φxABAB×FAx=FA
13 6 adantr φxABF:AB
14 1 adantr φxABA
15 14 rexrd φxABA*
16 2 adantr φxABB
17 16 rexrd φxABB*
18 elicc2 ABxABxAxxB
19 1 2 18 syl2anc φxABxAxxB
20 19 biimpa φxABxAxxB
21 20 simp1d φxABx
22 20 simp2d φxABAx
23 20 simp3d φxABxB
24 14 21 16 22 23 letrd φxABAB
25 lbicc2 A*B*ABAAB
26 15 17 24 25 syl3anc φxABAAB
27 13 26 ffvelcdmd φxABFA
28 6 ffvelcdmda φxABFx
29 27 28 subcld φxABFAFx
30 simpr φxABxAB
31 26 30 jca φxABAABxAB
32 4 dmeqd φdomF=domAB×0
33 c0ex 0V
34 33 snnz 0
35 dmxp 0domAB×0=AB
36 34 35 ax-mp domAB×0=AB
37 32 36 eqtrdi φdomF=AB
38 0red φ0
39 4 fveq1d φFy=AB×0y
40 33 fvconst2 yABAB×0y=0
41 39 40 sylan9eq φyABFy=0
42 41 abs00bd φyABFy=0
43 0le0 00
44 42 43 eqbrtrdi φyABFy0
45 1 2 3 37 38 44 dvlip φAABxABFAFx0Ax
46 31 45 syldan φxABFAFx0Ax
47 14 recnd φxABA
48 21 recnd φxABx
49 47 48 subcld φxABAx
50 49 abscld φxABAx
51 50 recnd φxABAx
52 51 mul02d φxAB0Ax=0
53 46 52 breqtrd φxABFAFx0
54 29 absge0d φxAB0FAFx
55 29 abscld φxABFAFx
56 0re 0
57 letri3 FAFx0FAFx=0FAFx00FAFx
58 55 56 57 sylancl φxABFAFx=0FAFx00FAFx
59 53 54 58 mpbir2and φxABFAFx=0
60 29 59 abs00d φxABFAFx=0
61 27 28 60 subeq0d φxABFA=Fx
62 12 61 eqtr2d φxABFx=AB×FAx
63 7 10 62 eqfnfvd φF=AB×FA