Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014) (Proof shortened by Mario Carneiro, 3-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dveq0.a | |
|
dveq0.b | |
||
dveq0.c | |
||
dveq0.d | |
||
Assertion | dveq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveq0.a | |
|
2 | dveq0.b | |
|
3 | dveq0.c | |
|
4 | dveq0.d | |
|
5 | cncff | |
|
6 | 3 5 | syl | |
7 | 6 | ffnd | |
8 | fvex | |
|
9 | fnconstg | |
|
10 | 8 9 | mp1i | |
11 | 8 | fvconst2 | |
12 | 11 | adantl | |
13 | 6 | adantr | |
14 | 1 | adantr | |
15 | 14 | rexrd | |
16 | 2 | adantr | |
17 | 16 | rexrd | |
18 | elicc2 | |
|
19 | 1 2 18 | syl2anc | |
20 | 19 | biimpa | |
21 | 20 | simp1d | |
22 | 20 | simp2d | |
23 | 20 | simp3d | |
24 | 14 21 16 22 23 | letrd | |
25 | lbicc2 | |
|
26 | 15 17 24 25 | syl3anc | |
27 | 13 26 | ffvelcdmd | |
28 | 6 | ffvelcdmda | |
29 | 27 28 | subcld | |
30 | simpr | |
|
31 | 26 30 | jca | |
32 | 4 | dmeqd | |
33 | c0ex | |
|
34 | 33 | snnz | |
35 | dmxp | |
|
36 | 34 35 | ax-mp | |
37 | 32 36 | eqtrdi | |
38 | 0red | |
|
39 | 4 | fveq1d | |
40 | 33 | fvconst2 | |
41 | 39 40 | sylan9eq | |
42 | 41 | abs00bd | |
43 | 0le0 | |
|
44 | 42 43 | eqbrtrdi | |
45 | 1 2 3 37 38 44 | dvlip | |
46 | 31 45 | syldan | |
47 | 14 | recnd | |
48 | 21 | recnd | |
49 | 47 48 | subcld | |
50 | 49 | abscld | |
51 | 50 | recnd | |
52 | 51 | mul02d | |
53 | 46 52 | breqtrd | |
54 | 29 | absge0d | |
55 | 29 | abscld | |
56 | 0re | |
|
57 | letri3 | |
|
58 | 55 56 57 | sylancl | |
59 | 53 54 58 | mpbir2and | |
60 | 29 59 | abs00d | |
61 | 27 28 60 | subeq0d | |
62 | 12 61 | eqtr2d | |
63 | 7 10 62 | eqfnfvd | |