Step |
Hyp |
Ref |
Expression |
1 |
|
dvlip2.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvlip2.j |
|- J = ( ( abs o. - ) |` ( S X. S ) ) |
3 |
|
dvlip2.x |
|- ( ph -> X C_ S ) |
4 |
|
dvlip2.f |
|- ( ph -> F : X --> CC ) |
5 |
|
dvlip2.a |
|- ( ph -> A e. S ) |
6 |
|
dvlip2.r |
|- ( ph -> R e. RR* ) |
7 |
|
dvlip2.b |
|- B = ( A ( ball ` J ) R ) |
8 |
|
dvlip2.d |
|- ( ph -> B C_ dom ( S _D F ) ) |
9 |
|
dvlip2.m |
|- ( ph -> M e. RR ) |
10 |
|
dvlip2.l |
|- ( ( ph /\ x e. B ) -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) |
11 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
12 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
13 |
1 12
|
syl |
|- ( ph -> S C_ CC ) |
14 |
|
xmetres2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S C_ CC ) -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) |
15 |
11 13 14
|
sylancr |
|- ( ph -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) |
16 |
2 15
|
eqeltrid |
|- ( ph -> J e. ( *Met ` S ) ) |
17 |
16
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> J e. ( *Met ` S ) ) |
18 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> A e. S ) |
19 |
|
simplrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. B ) |
20 |
19 7
|
eleqtrdi |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. ( A ( ball ` J ) R ) ) |
21 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> R e. RR* ) |
22 |
|
elbl |
|- ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( Z e. ( A ( ball ` J ) R ) <-> ( Z e. S /\ ( A J Z ) < R ) ) ) |
23 |
17 18 21 22
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z e. ( A ( ball ` J ) R ) <-> ( Z e. S /\ ( A J Z ) < R ) ) ) |
24 |
20 23
|
mpbid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z e. S /\ ( A J Z ) < R ) ) |
25 |
24
|
simpld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. S ) |
26 |
|
xmetcl |
|- ( ( J e. ( *Met ` S ) /\ A e. S /\ Z e. S ) -> ( A J Z ) e. RR* ) |
27 |
17 18 25 26
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) e. RR* ) |
28 |
|
simplrl |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. B ) |
29 |
28 7
|
eleqtrdi |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. ( A ( ball ` J ) R ) ) |
30 |
|
elbl |
|- ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( Y e. ( A ( ball ` J ) R ) <-> ( Y e. S /\ ( A J Y ) < R ) ) ) |
31 |
17 18 21 30
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y e. ( A ( ball ` J ) R ) <-> ( Y e. S /\ ( A J Y ) < R ) ) ) |
32 |
29 31
|
mpbid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y e. S /\ ( A J Y ) < R ) ) |
33 |
32
|
simpld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. S ) |
34 |
|
xmetcl |
|- ( ( J e. ( *Met ` S ) /\ A e. S /\ Y e. S ) -> ( A J Y ) e. RR* ) |
35 |
17 18 33 34
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) e. RR* ) |
36 |
27 35
|
ifcld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) e. RR* ) |
37 |
24
|
simprd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) < R ) |
38 |
32
|
simprd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) < R ) |
39 |
|
breq1 |
|- ( ( A J Z ) = if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) -> ( ( A J Z ) < R <-> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) ) |
40 |
|
breq1 |
|- ( ( A J Y ) = if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) -> ( ( A J Y ) < R <-> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) ) |
41 |
39 40
|
ifboth |
|- ( ( ( A J Z ) < R /\ ( A J Y ) < R ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) |
42 |
37 38 41
|
syl2anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) |
43 |
|
qbtwnxr |
|- ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) e. RR* /\ R e. RR* /\ if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) -> E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) ) |
44 |
36 21 42 43
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) ) |
45 |
|
qre |
|- ( r e. QQ -> r e. RR ) |
46 |
|
rexr |
|- ( r e. RR -> r e. RR* ) |
47 |
|
xrmaxlt |
|- ( ( ( A J Y ) e. RR* /\ ( A J Z ) e. RR* /\ r e. RR* ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r <-> ( ( A J Y ) < r /\ ( A J Z ) < r ) ) ) |
48 |
35 27 46 47
|
syl2an3an |
|- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r <-> ( ( A J Y ) < r /\ ( A J Z ) < r ) ) ) |
49 |
|
ioossicc |
|- ( ( A - r ) (,) ( A + r ) ) C_ ( ( A - r ) [,] ( A + r ) ) |
50 |
|
simpr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> S = RR ) |
51 |
33 50
|
eleqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. RR ) |
52 |
51
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. RR ) |
53 |
|
xmetsym |
|- ( ( J e. ( *Met ` S ) /\ A e. S /\ Y e. S ) -> ( A J Y ) = ( Y J A ) ) |
54 |
17 18 33 53
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) = ( Y J A ) ) |
55 |
50
|
sqxpeqd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( S X. S ) = ( RR X. RR ) ) |
56 |
55
|
reseq2d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) ) |
57 |
2 56
|
eqtrid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> J = ( ( abs o. - ) |` ( RR X. RR ) ) ) |
58 |
57
|
oveqd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y J A ) = ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) |
59 |
18 50
|
eleqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> A e. RR ) |
60 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
61 |
60
|
remetdval |
|- ( ( Y e. RR /\ A e. RR ) -> ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Y - A ) ) ) |
62 |
51 59 61
|
syl2anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Y - A ) ) ) |
63 |
54 58 62
|
3eqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) = ( abs ` ( Y - A ) ) ) |
64 |
63
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Y ) = ( abs ` ( Y - A ) ) ) |
65 |
|
simprll |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Y ) < r ) |
66 |
64 65
|
eqbrtrrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( Y - A ) ) < r ) |
67 |
59
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> A e. RR ) |
68 |
|
simplr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> r e. RR ) |
69 |
52 67 68
|
absdifltd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( abs ` ( Y - A ) ) < r <-> ( ( A - r ) < Y /\ Y < ( A + r ) ) ) ) |
70 |
66 69
|
mpbid |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) < Y /\ Y < ( A + r ) ) ) |
71 |
70
|
simpld |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) < Y ) |
72 |
70
|
simprd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y < ( A + r ) ) |
73 |
67 68
|
resubcld |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) e. RR ) |
74 |
73
|
rexrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) e. RR* ) |
75 |
67 68
|
readdcld |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A + r ) e. RR ) |
76 |
75
|
rexrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A + r ) e. RR* ) |
77 |
|
elioo2 |
|- ( ( ( A - r ) e. RR* /\ ( A + r ) e. RR* ) -> ( Y e. ( ( A - r ) (,) ( A + r ) ) <-> ( Y e. RR /\ ( A - r ) < Y /\ Y < ( A + r ) ) ) ) |
78 |
74 76 77
|
syl2anc |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( Y e. ( ( A - r ) (,) ( A + r ) ) <-> ( Y e. RR /\ ( A - r ) < Y /\ Y < ( A + r ) ) ) ) |
79 |
52 71 72 78
|
mpbir3and |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. ( ( A - r ) (,) ( A + r ) ) ) |
80 |
49 79
|
sselid |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. ( ( A - r ) [,] ( A + r ) ) ) |
81 |
80
|
fvresd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) = ( F ` Y ) ) |
82 |
25 50
|
eleqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. RR ) |
83 |
82
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. RR ) |
84 |
|
xmetsym |
|- ( ( J e. ( *Met ` S ) /\ A e. S /\ Z e. S ) -> ( A J Z ) = ( Z J A ) ) |
85 |
17 18 25 84
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) = ( Z J A ) ) |
86 |
57
|
oveqd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z J A ) = ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) |
87 |
60
|
remetdval |
|- ( ( Z e. RR /\ A e. RR ) -> ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Z - A ) ) ) |
88 |
82 59 87
|
syl2anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Z - A ) ) ) |
89 |
85 86 88
|
3eqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) = ( abs ` ( Z - A ) ) ) |
90 |
89
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Z ) = ( abs ` ( Z - A ) ) ) |
91 |
|
simprlr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Z ) < r ) |
92 |
90 91
|
eqbrtrrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( Z - A ) ) < r ) |
93 |
83 67 68
|
absdifltd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( abs ` ( Z - A ) ) < r <-> ( ( A - r ) < Z /\ Z < ( A + r ) ) ) ) |
94 |
92 93
|
mpbid |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) < Z /\ Z < ( A + r ) ) ) |
95 |
94
|
simpld |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) < Z ) |
96 |
94
|
simprd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z < ( A + r ) ) |
97 |
|
elioo2 |
|- ( ( ( A - r ) e. RR* /\ ( A + r ) e. RR* ) -> ( Z e. ( ( A - r ) (,) ( A + r ) ) <-> ( Z e. RR /\ ( A - r ) < Z /\ Z < ( A + r ) ) ) ) |
98 |
74 76 97
|
syl2anc |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( Z e. ( ( A - r ) (,) ( A + r ) ) <-> ( Z e. RR /\ ( A - r ) < Z /\ Z < ( A + r ) ) ) ) |
99 |
83 95 96 98
|
mpbir3and |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. ( ( A - r ) (,) ( A + r ) ) ) |
100 |
49 99
|
sselid |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. ( ( A - r ) [,] ( A + r ) ) ) |
101 |
100
|
fvresd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) = ( F ` Z ) ) |
102 |
81 101
|
oveq12d |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) = ( ( F ` Y ) - ( F ` Z ) ) ) |
103 |
102
|
fveq2d |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) = ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) ) |
104 |
17
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> J e. ( *Met ` S ) ) |
105 |
|
elicc2 |
|- ( ( ( A - r ) e. RR /\ ( A + r ) e. RR ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) <-> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) |
106 |
73 75 105
|
syl2anc |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) <-> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) |
107 |
106
|
biimpa |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) |
108 |
107
|
simp1d |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. RR ) |
109 |
50
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> S = RR ) |
110 |
108 109
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. S ) |
111 |
18
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> A e. S ) |
112 |
|
xmetcl |
|- ( ( J e. ( *Met ` S ) /\ x e. S /\ A e. S ) -> ( x J A ) e. RR* ) |
113 |
104 110 111 112
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) e. RR* ) |
114 |
68
|
adantr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r e. RR ) |
115 |
114
|
rexrd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r e. RR* ) |
116 |
21
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> R e. RR* ) |
117 |
57
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> J = ( ( abs o. - ) |` ( RR X. RR ) ) ) |
118 |
117
|
oveqd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) |
119 |
67
|
adantr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> A e. RR ) |
120 |
60
|
remetdval |
|- ( ( x e. RR /\ A e. RR ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( x - A ) ) ) |
121 |
108 119 120
|
syl2anc |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( x - A ) ) ) |
122 |
118 121
|
eqtrd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) = ( abs ` ( x - A ) ) ) |
123 |
107
|
simp2d |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( A - r ) <_ x ) |
124 |
107
|
simp3d |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x <_ ( A + r ) ) |
125 |
108 119 114
|
absdifled |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( ( abs ` ( x - A ) ) <_ r <-> ( ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) |
126 |
123 124 125
|
mpbir2and |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( abs ` ( x - A ) ) <_ r ) |
127 |
122 126
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) <_ r ) |
128 |
|
simplrr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r < R ) |
129 |
113 115 116 127 128
|
xrlelttrd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) < R ) |
130 |
|
elbl3 |
|- ( ( ( J e. ( *Met ` S ) /\ R e. RR* ) /\ ( A e. S /\ x e. S ) ) -> ( x e. ( A ( ball ` J ) R ) <-> ( x J A ) < R ) ) |
131 |
104 116 111 110 130
|
syl22anc |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x e. ( A ( ball ` J ) R ) <-> ( x J A ) < R ) ) |
132 |
129 131
|
mpbird |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. ( A ( ball ` J ) R ) ) |
133 |
132
|
ex |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) -> x e. ( A ( ball ` J ) R ) ) ) |
134 |
133
|
ssrdv |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ ( A ( ball ` J ) R ) ) |
135 |
134 7
|
sseqtrrdi |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ B ) |
136 |
135
|
resabs1d |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) = ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) |
137 |
|
ax-resscn |
|- RR C_ CC |
138 |
137
|
a1i |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> RR C_ CC ) |
139 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> F : X --> CC ) |
140 |
13 4 3
|
dvbss |
|- ( ph -> dom ( S _D F ) C_ X ) |
141 |
8 140
|
sstrd |
|- ( ph -> B C_ X ) |
142 |
141
|
ad4antr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> B C_ X ) |
143 |
139 142
|
fssresd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` B ) : B --> CC ) |
144 |
|
blssm |
|- ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( A ( ball ` J ) R ) C_ S ) |
145 |
17 18 21 144
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` J ) R ) C_ S ) |
146 |
7 145
|
eqsstrid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ S ) |
147 |
146 50
|
sseqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ RR ) |
148 |
147
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> B C_ RR ) |
149 |
137
|
a1i |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> RR C_ CC ) |
150 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> F : X --> CC ) |
151 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> X C_ S ) |
152 |
151 50
|
sseqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> X C_ RR ) |
153 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
154 |
153
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
155 |
153 154
|
dvres |
|- ( ( ( RR C_ CC /\ F : X --> CC ) /\ ( X C_ RR /\ B C_ RR ) ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) ) |
156 |
149 150 152 147 155
|
syl22anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) ) |
157 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
158 |
57
|
fveq2d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ball ` J ) = ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
159 |
158
|
oveqd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` J ) R ) = ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) ) |
160 |
7 159
|
eqtrid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B = ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) ) |
161 |
57 17
|
eqeltrrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` S ) ) |
162 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
163 |
60 162
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
164 |
163
|
blopn |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) e. ( topGen ` ran (,) ) ) |
165 |
161 18 21 164
|
syl3anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) e. ( topGen ` ran (,) ) ) |
166 |
160 165
|
eqeltrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B e. ( topGen ` ran (,) ) ) |
167 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ B e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` B ) = B ) |
168 |
157 166 167
|
sylancr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` B ) = B ) |
169 |
168
|
reseq2d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) = ( ( RR _D F ) |` B ) ) |
170 |
156 169
|
eqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` B ) ) |
171 |
170
|
dmeqd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( RR _D ( F |` B ) ) = dom ( ( RR _D F ) |` B ) ) |
172 |
|
dmres |
|- dom ( ( RR _D F ) |` B ) = ( B i^i dom ( RR _D F ) ) |
173 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ dom ( S _D F ) ) |
174 |
50
|
oveq1d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( S _D F ) = ( RR _D F ) ) |
175 |
174
|
dmeqd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( S _D F ) = dom ( RR _D F ) ) |
176 |
173 175
|
sseqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ dom ( RR _D F ) ) |
177 |
|
df-ss |
|- ( B C_ dom ( RR _D F ) <-> ( B i^i dom ( RR _D F ) ) = B ) |
178 |
176 177
|
sylib |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( B i^i dom ( RR _D F ) ) = B ) |
179 |
172 178
|
eqtrid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( ( RR _D F ) |` B ) = B ) |
180 |
171 179
|
eqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( RR _D ( F |` B ) ) = B ) |
181 |
180
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` B ) ) = B ) |
182 |
|
dvcn |
|- ( ( ( RR C_ CC /\ ( F |` B ) : B --> CC /\ B C_ RR ) /\ dom ( RR _D ( F |` B ) ) = B ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
183 |
138 143 148 181 182
|
syl31anc |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
184 |
|
rescncf |
|- ( ( ( A - r ) [,] ( A + r ) ) C_ B -> ( ( F |` B ) e. ( B -cn-> CC ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) ) |
185 |
135 183 184
|
sylc |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) |
186 |
136 185
|
eqeltrrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) |
187 |
135 148
|
sstrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ RR ) |
188 |
153 154
|
dvres |
|- ( ( ( RR C_ CC /\ ( F |` B ) : B --> CC ) /\ ( B C_ RR /\ ( ( A - r ) [,] ( A + r ) ) C_ RR ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) ) |
189 |
138 143 148 187 188
|
syl22anc |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) ) |
190 |
136
|
oveq2d |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ) |
191 |
|
iccntr |
|- ( ( ( A - r ) e. RR /\ ( A + r ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
192 |
73 75 191
|
syl2anc |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
193 |
192
|
reseq2d |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) |
194 |
189 190 193
|
3eqtr3d |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) |
195 |
194
|
dmeqd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) |
196 |
|
dmres |
|- dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) = ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) |
197 |
49 135
|
sstrid |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) (,) ( A + r ) ) C_ B ) |
198 |
197 181
|
sseqtrrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) (,) ( A + r ) ) C_ dom ( RR _D ( F |` B ) ) ) |
199 |
|
df-ss |
|- ( ( ( A - r ) (,) ( A + r ) ) C_ dom ( RR _D ( F |` B ) ) <-> ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
200 |
198 199
|
sylib |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
201 |
196 200
|
eqtrid |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
202 |
195 201
|
eqtrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) |
203 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> M e. RR ) |
204 |
194
|
fveq1d |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ` x ) ) |
205 |
|
fvres |
|- ( x e. ( ( A - r ) (,) ( A + r ) ) -> ( ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ` x ) = ( ( RR _D ( F |` B ) ) ` x ) ) |
206 |
204 205
|
sylan9eq |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( RR _D ( F |` B ) ) ` x ) ) |
207 |
174
|
reseq1d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( S _D F ) |` B ) = ( ( RR _D F ) |` B ) ) |
208 |
170 207
|
eqtr4d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( S _D F ) |` B ) ) |
209 |
208
|
fveq1d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( RR _D ( F |` B ) ) ` x ) = ( ( ( S _D F ) |` B ) ` x ) ) |
210 |
209
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` B ) ) ` x ) = ( ( ( S _D F ) |` B ) ` x ) ) |
211 |
197
|
sselda |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> x e. B ) |
212 |
211
|
fvresd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( ( S _D F ) |` B ) ` x ) = ( ( S _D F ) ` x ) ) |
213 |
206 210 212
|
3eqtrd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( S _D F ) ` x ) ) |
214 |
213
|
fveq2d |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) ) = ( abs ` ( ( S _D F ) ` x ) ) ) |
215 |
|
simp-4l |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ph ) |
216 |
215 211 10
|
syl2an2r |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) |
217 |
214 216
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) ) <_ M ) |
218 |
73 75 186 202 203 217
|
dvlip |
|- ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ ( Y e. ( ( A - r ) [,] ( A + r ) ) /\ Z e. ( ( A - r ) [,] ( A + r ) ) ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
219 |
218
|
ex |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( Y e. ( ( A - r ) [,] ( A + r ) ) /\ Z e. ( ( A - r ) [,] ( A + r ) ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
220 |
80 100 219
|
mp2and |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
221 |
103 220
|
eqbrtrrd |
|- ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
222 |
221
|
exp32 |
|- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( ( ( A J Y ) < r /\ ( A J Z ) < r ) -> ( r < R -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) ) |
223 |
48 222
|
sylbid |
|- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r -> ( r < R -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) ) |
224 |
223
|
impd |
|- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
225 |
45 224
|
sylan2 |
|- ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. QQ ) -> ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
226 |
225
|
rexlimdva |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
227 |
44 226
|
mpd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
228 |
|
simpr |
|- ( ( ph /\ S = CC ) -> S = CC ) |
229 |
228
|
sqxpeqd |
|- ( ( ph /\ S = CC ) -> ( S X. S ) = ( CC X. CC ) ) |
230 |
229
|
reseq2d |
|- ( ( ph /\ S = CC ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( CC X. CC ) ) ) |
231 |
|
absf |
|- abs : CC --> RR |
232 |
|
subf |
|- - : ( CC X. CC ) --> CC |
233 |
|
fco |
|- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
234 |
231 232 233
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
235 |
|
ffn |
|- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
236 |
|
fnresdm |
|- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
237 |
234 235 236
|
mp2b |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
238 |
230 237
|
eqtrdi |
|- ( ( ph /\ S = CC ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( abs o. - ) ) |
239 |
2 238
|
eqtrid |
|- ( ( ph /\ S = CC ) -> J = ( abs o. - ) ) |
240 |
239
|
fveq2d |
|- ( ( ph /\ S = CC ) -> ( ball ` J ) = ( ball ` ( abs o. - ) ) ) |
241 |
240
|
oveqd |
|- ( ( ph /\ S = CC ) -> ( A ( ball ` J ) R ) = ( A ( ball ` ( abs o. - ) ) R ) ) |
242 |
7 241
|
eqtrid |
|- ( ( ph /\ S = CC ) -> B = ( A ( ball ` ( abs o. - ) ) R ) ) |
243 |
242
|
eleq2d |
|- ( ( ph /\ S = CC ) -> ( Y e. B <-> Y e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
244 |
242
|
eleq2d |
|- ( ( ph /\ S = CC ) -> ( Z e. B <-> Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
245 |
243 244
|
anbi12d |
|- ( ( ph /\ S = CC ) -> ( ( Y e. B /\ Z e. B ) <-> ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) ) |
246 |
245
|
biimpa |
|- ( ( ( ph /\ S = CC ) /\ ( Y e. B /\ Z e. B ) ) -> ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
247 |
3
|
adantr |
|- ( ( ph /\ S = CC ) -> X C_ S ) |
248 |
247 228
|
sseqtrd |
|- ( ( ph /\ S = CC ) -> X C_ CC ) |
249 |
4
|
adantr |
|- ( ( ph /\ S = CC ) -> F : X --> CC ) |
250 |
5
|
adantr |
|- ( ( ph /\ S = CC ) -> A e. S ) |
251 |
250 228
|
eleqtrd |
|- ( ( ph /\ S = CC ) -> A e. CC ) |
252 |
6
|
adantr |
|- ( ( ph /\ S = CC ) -> R e. RR* ) |
253 |
|
eqid |
|- ( A ( ball ` ( abs o. - ) ) R ) = ( A ( ball ` ( abs o. - ) ) R ) |
254 |
8
|
adantr |
|- ( ( ph /\ S = CC ) -> B C_ dom ( S _D F ) ) |
255 |
228
|
oveq1d |
|- ( ( ph /\ S = CC ) -> ( S _D F ) = ( CC _D F ) ) |
256 |
255
|
dmeqd |
|- ( ( ph /\ S = CC ) -> dom ( S _D F ) = dom ( CC _D F ) ) |
257 |
254 242 256
|
3sstr3d |
|- ( ( ph /\ S = CC ) -> ( A ( ball ` ( abs o. - ) ) R ) C_ dom ( CC _D F ) ) |
258 |
9
|
adantr |
|- ( ( ph /\ S = CC ) -> M e. RR ) |
259 |
10
|
ex |
|- ( ph -> ( x e. B -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) ) |
260 |
259
|
adantr |
|- ( ( ph /\ S = CC ) -> ( x e. B -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) ) |
261 |
242
|
eleq2d |
|- ( ( ph /\ S = CC ) -> ( x e. B <-> x e. ( A ( ball ` ( abs o. - ) ) R ) ) ) |
262 |
255
|
fveq1d |
|- ( ( ph /\ S = CC ) -> ( ( S _D F ) ` x ) = ( ( CC _D F ) ` x ) ) |
263 |
262
|
fveq2d |
|- ( ( ph /\ S = CC ) -> ( abs ` ( ( S _D F ) ` x ) ) = ( abs ` ( ( CC _D F ) ` x ) ) ) |
264 |
263
|
breq1d |
|- ( ( ph /\ S = CC ) -> ( ( abs ` ( ( S _D F ) ` x ) ) <_ M <-> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) ) |
265 |
260 261 264
|
3imtr3d |
|- ( ( ph /\ S = CC ) -> ( x e. ( A ( ball ` ( abs o. - ) ) R ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) ) |
266 |
265
|
imp |
|- ( ( ( ph /\ S = CC ) /\ x e. ( A ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) |
267 |
248 249 251 252 253 257 258 266
|
dvlipcn |
|- ( ( ( ph /\ S = CC ) /\ ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
268 |
246 267
|
syldan |
|- ( ( ( ph /\ S = CC ) /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
269 |
268
|
an32s |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = CC ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
270 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
271 |
1 270
|
syl |
|- ( ph -> ( S = RR \/ S = CC ) ) |
272 |
271
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( S = RR \/ S = CC ) ) |
273 |
227 269 272
|
mpjaodan |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |