| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvlipcn.x |
|- ( ph -> X C_ CC ) |
| 2 |
|
dvlipcn.f |
|- ( ph -> F : X --> CC ) |
| 3 |
|
dvlipcn.a |
|- ( ph -> A e. CC ) |
| 4 |
|
dvlipcn.r |
|- ( ph -> R e. RR* ) |
| 5 |
|
dvlipcn.b |
|- B = ( A ( ball ` ( abs o. - ) ) R ) |
| 6 |
|
dvlipcn.d |
|- ( ph -> B C_ dom ( CC _D F ) ) |
| 7 |
|
dvlipcn.m |
|- ( ph -> M e. RR ) |
| 8 |
|
dvlipcn.l |
|- ( ( ph /\ x e. B ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) |
| 9 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 10 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 11 |
|
0red |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> 0 e. RR ) |
| 12 |
|
1red |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> 1 e. RR ) |
| 13 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 14 |
13 2 1
|
dvbss |
|- ( ph -> dom ( CC _D F ) C_ X ) |
| 15 |
6 14
|
sstrd |
|- ( ph -> B C_ X ) |
| 16 |
15 1
|
sstrd |
|- ( ph -> B C_ CC ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> B C_ CC ) |
| 18 |
|
simprl |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Y e. B ) |
| 19 |
17 18
|
sseldd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Y e. CC ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Y e. CC ) |
| 21 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 22 |
|
ax-resscn |
|- RR C_ CC |
| 23 |
21 22
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
| 24 |
|
simpr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> t e. ( 0 [,] 1 ) ) |
| 25 |
23 24
|
sselid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> t e. CC ) |
| 26 |
20 25
|
mulcomd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( Y x. t ) = ( t x. Y ) ) |
| 27 |
|
simprr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Z e. B ) |
| 28 |
17 27
|
sseldd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> Z e. CC ) |
| 29 |
28
|
adantr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Z e. CC ) |
| 30 |
|
iirev |
|- ( t e. ( 0 [,] 1 ) -> ( 1 - t ) e. ( 0 [,] 1 ) ) |
| 31 |
30
|
adantl |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 - t ) e. ( 0 [,] 1 ) ) |
| 32 |
23 31
|
sselid |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 - t ) e. CC ) |
| 33 |
29 32
|
mulcomd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( Z x. ( 1 - t ) ) = ( ( 1 - t ) x. Z ) ) |
| 34 |
26 33
|
oveq12d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) = ( ( t x. Y ) + ( ( 1 - t ) x. Z ) ) ) |
| 35 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> A e. CC ) |
| 36 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> R e. RR* ) |
| 37 |
18
|
adantr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Y e. B ) |
| 38 |
27
|
adantr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> Z e. B ) |
| 39 |
5
|
blcvx |
|- ( ( ( A e. CC /\ R e. RR* ) /\ ( Y e. B /\ Z e. B /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. Y ) + ( ( 1 - t ) x. Z ) ) e. B ) |
| 40 |
35 36 37 38 24 39
|
syl23anc |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( t x. Y ) + ( ( 1 - t ) x. Z ) ) e. B ) |
| 41 |
34 40
|
eqeltrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. B ) |
| 42 |
|
eqidd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
| 43 |
2 15
|
fssresd |
|- ( ph -> ( F |` B ) : B --> CC ) |
| 44 |
43
|
feqmptd |
|- ( ph -> ( F |` B ) = ( z e. B |-> ( ( F |` B ) ` z ) ) ) |
| 45 |
|
fvres |
|- ( z e. B -> ( ( F |` B ) ` z ) = ( F ` z ) ) |
| 46 |
45
|
mpteq2ia |
|- ( z e. B |-> ( ( F |` B ) ` z ) ) = ( z e. B |-> ( F ` z ) ) |
| 47 |
44 46
|
eqtrdi |
|- ( ph -> ( F |` B ) = ( z e. B |-> ( F ` z ) ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F |` B ) = ( z e. B |-> ( F ` z ) ) ) |
| 49 |
|
fveq2 |
|- ( z = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( F ` z ) = ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
| 50 |
41 42 48 49
|
fmptco |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( F |` B ) o. ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) |
| 51 |
41
|
fmpttd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) : ( 0 [,] 1 ) --> B ) |
| 52 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 53 |
52
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 54 |
53
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 55 |
|
ssid |
|- CC C_ CC |
| 56 |
|
cncfmptc |
|- ( ( Y e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> Y ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 57 |
23 55 56
|
mp3an23 |
|- ( Y e. CC -> ( t e. ( 0 [,] 1 ) |-> Y ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 58 |
19 57
|
syl |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> Y ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 59 |
|
cncfmptid |
|- ( ( ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 60 |
23 55 59
|
mp2an |
|- ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) |
| 61 |
60
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> t ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 62 |
58 61
|
mulcncf |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( Y x. t ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 63 |
|
cncfmptc |
|- ( ( Z e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> Z ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 64 |
23 55 63
|
mp3an23 |
|- ( Z e. CC -> ( t e. ( 0 [,] 1 ) |-> Z ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 65 |
28 64
|
syl |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> Z ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 66 |
52
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 67 |
66
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 68 |
|
ax-1cn |
|- 1 e. CC |
| 69 |
|
cncfmptc |
|- ( ( 1 e. CC /\ ( 0 [,] 1 ) C_ CC /\ CC C_ CC ) -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 70 |
68 23 55 69
|
mp3an |
|- ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) |
| 71 |
70
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 72 |
52 67 71 61
|
cncfmpt2f |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( 1 - t ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 73 |
65 72
|
mulcncf |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( Z x. ( 1 - t ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 74 |
52 54 62 73
|
cncfmpt2f |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 75 |
|
cncfcdm |
|- ( ( B C_ CC /\ ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> B ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) : ( 0 [,] 1 ) --> B ) ) |
| 76 |
17 74 75
|
syl2anc |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> B ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) : ( 0 [,] 1 ) --> B ) ) |
| 77 |
51 76
|
mpbird |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> B ) ) |
| 78 |
|
ssidd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> CC C_ CC ) |
| 79 |
43
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F |` B ) : B --> CC ) |
| 80 |
52
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 81 |
80
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 82 |
52 81
|
dvres |
|- ( ( ( CC C_ CC /\ F : X --> CC ) /\ ( X C_ CC /\ B C_ CC ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 83 |
13 2 1 16 82
|
syl22anc |
|- ( ph -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 84 |
52
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 85 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 86 |
52
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 87 |
86
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ R e. RR* ) -> ( A ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) ) |
| 88 |
85 3 4 87
|
mp3an2i |
|- ( ph -> ( A ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) ) |
| 89 |
5 88
|
eqeltrid |
|- ( ph -> B e. ( TopOpen ` CCfld ) ) |
| 90 |
|
isopn3i |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ B e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` B ) = B ) |
| 91 |
84 89 90
|
sylancr |
|- ( ph -> ( ( int ` ( TopOpen ` CCfld ) ) ` B ) = B ) |
| 92 |
91
|
reseq2d |
|- ( ph -> ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) = ( ( CC _D F ) |` B ) ) |
| 93 |
83 92
|
eqtrd |
|- ( ph -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` B ) ) |
| 94 |
93
|
dmeqd |
|- ( ph -> dom ( CC _D ( F |` B ) ) = dom ( ( CC _D F ) |` B ) ) |
| 95 |
|
dmres |
|- dom ( ( CC _D F ) |` B ) = ( B i^i dom ( CC _D F ) ) |
| 96 |
|
dfss2 |
|- ( B C_ dom ( CC _D F ) <-> ( B i^i dom ( CC _D F ) ) = B ) |
| 97 |
6 96
|
sylib |
|- ( ph -> ( B i^i dom ( CC _D F ) ) = B ) |
| 98 |
95 97
|
eqtrid |
|- ( ph -> dom ( ( CC _D F ) |` B ) = B ) |
| 99 |
94 98
|
eqtrd |
|- ( ph -> dom ( CC _D ( F |` B ) ) = B ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( CC _D ( F |` B ) ) = B ) |
| 101 |
|
dvcn |
|- ( ( ( CC C_ CC /\ ( F |` B ) : B --> CC /\ B C_ CC ) /\ dom ( CC _D ( F |` B ) ) = B ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
| 102 |
78 79 17 100 101
|
syl31anc |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F |` B ) e. ( B -cn-> CC ) ) |
| 103 |
77 102
|
cncfco |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( F |` B ) o. ( t e. ( 0 [,] 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 104 |
50 103
|
eqeltrrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
| 105 |
22
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> RR C_ CC ) |
| 106 |
21
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 [,] 1 ) C_ RR ) |
| 107 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> F : X --> CC ) |
| 108 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> B C_ X ) |
| 109 |
108 41
|
sseldd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. X ) |
| 110 |
107 109
|
ffvelcdmd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 [,] 1 ) ) -> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. CC ) |
| 111 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 112 |
|
1re |
|- 1 e. RR |
| 113 |
|
iccntr |
|- ( ( 0 e. RR /\ 1 e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
| 114 |
11 112 113
|
sylancl |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] 1 ) ) = ( 0 (,) 1 ) ) |
| 115 |
105 106 110 111 52 114
|
dvmptntr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( RR _D ( t e. ( 0 (,) 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ) |
| 116 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 117 |
116
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> RR e. { RR , CC } ) |
| 118 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 119 |
118
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> CC e. { RR , CC } ) |
| 120 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 121 |
120
|
sseli |
|- ( t e. ( 0 (,) 1 ) -> t e. ( 0 [,] 1 ) ) |
| 122 |
121 41
|
sylan2 |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. B ) |
| 123 |
19 28
|
subcld |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y - Z ) e. CC ) |
| 124 |
123
|
adantr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( Y - Z ) e. CC ) |
| 125 |
15
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> B C_ X ) |
| 126 |
125
|
sselda |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. B ) -> z e. X ) |
| 127 |
2
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> F : X --> CC ) |
| 128 |
127
|
ffvelcdmda |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. X ) -> ( F ` z ) e. CC ) |
| 129 |
126 128
|
syldan |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. B ) -> ( F ` z ) e. CC ) |
| 130 |
|
fvexd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. B ) -> ( ( CC _D F ) ` z ) e. _V ) |
| 131 |
19
|
adantr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> Y e. CC ) |
| 132 |
121 25
|
sylan2 |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> t e. CC ) |
| 133 |
131 132
|
mulcld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( Y x. t ) e. CC ) |
| 134 |
|
1red |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 1 e. RR ) |
| 135 |
|
simpr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> t e. RR ) |
| 136 |
135
|
recnd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> t e. CC ) |
| 137 |
|
1red |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> 1 e. RR ) |
| 138 |
117
|
dvmptid |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) |
| 139 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
| 140 |
139
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 (,) 1 ) C_ RR ) |
| 141 |
|
iooretop |
|- ( 0 (,) 1 ) e. ( topGen ` ran (,) ) |
| 142 |
141
|
a1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 (,) 1 ) e. ( topGen ` ran (,) ) ) |
| 143 |
117 136 137 138 140 111 52 142
|
dvmptres |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> t ) ) = ( t e. ( 0 (,) 1 ) |-> 1 ) ) |
| 144 |
117 132 134 143 19
|
dvmptcmul |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Y x. t ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y x. 1 ) ) ) |
| 145 |
19
|
mulridd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y x. 1 ) = Y ) |
| 146 |
145
|
mpteq2dv |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 (,) 1 ) |-> ( Y x. 1 ) ) = ( t e. ( 0 (,) 1 ) |-> Y ) ) |
| 147 |
144 146
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Y x. t ) ) ) = ( t e. ( 0 (,) 1 ) |-> Y ) ) |
| 148 |
28
|
adantr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> Z e. CC ) |
| 149 |
121 32
|
sylan2 |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( 1 - t ) e. CC ) |
| 150 |
148 149
|
mulcld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( Z x. ( 1 - t ) ) e. CC ) |
| 151 |
|
negex |
|- -u Z e. _V |
| 152 |
151
|
a1i |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> -u Z e. _V ) |
| 153 |
|
negex |
|- -u 1 e. _V |
| 154 |
153
|
a1i |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> -u 1 e. _V ) |
| 155 |
|
1cnd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 1 e. CC ) |
| 156 |
|
0red |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 0 e. RR ) |
| 157 |
|
1cnd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> 1 e. CC ) |
| 158 |
|
0red |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. RR ) -> 0 e. RR ) |
| 159 |
|
1cnd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> 1 e. CC ) |
| 160 |
117 159
|
dvmptc |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. RR |-> 1 ) ) = ( t e. RR |-> 0 ) ) |
| 161 |
117 157 158 160 140 111 52 142
|
dvmptres |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> 1 ) ) = ( t e. ( 0 (,) 1 ) |-> 0 ) ) |
| 162 |
117 155 156 161 132 134 143
|
dvmptsub |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( 1 - t ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( 0 - 1 ) ) ) |
| 163 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 164 |
163
|
mpteq2i |
|- ( t e. ( 0 (,) 1 ) |-> -u 1 ) = ( t e. ( 0 (,) 1 ) |-> ( 0 - 1 ) ) |
| 165 |
162 164
|
eqtr4di |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( 1 - t ) ) ) = ( t e. ( 0 (,) 1 ) |-> -u 1 ) ) |
| 166 |
117 149 154 165 28
|
dvmptcmul |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Z x. ( 1 - t ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Z x. -u 1 ) ) ) |
| 167 |
|
neg1cn |
|- -u 1 e. CC |
| 168 |
|
mulcom |
|- ( ( Z e. CC /\ -u 1 e. CC ) -> ( Z x. -u 1 ) = ( -u 1 x. Z ) ) |
| 169 |
28 167 168
|
sylancl |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. -u 1 ) = ( -u 1 x. Z ) ) |
| 170 |
28
|
mulm1d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( -u 1 x. Z ) = -u Z ) |
| 171 |
169 170
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. -u 1 ) = -u Z ) |
| 172 |
171
|
mpteq2dv |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 (,) 1 ) |-> ( Z x. -u 1 ) ) = ( t e. ( 0 (,) 1 ) |-> -u Z ) ) |
| 173 |
166 172
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( Z x. ( 1 - t ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> -u Z ) ) |
| 174 |
117 133 131 147 150 152 173
|
dvmptadd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y + -u Z ) ) ) |
| 175 |
19 28
|
negsubd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y + -u Z ) = ( Y - Z ) ) |
| 176 |
175
|
mpteq2dv |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( t e. ( 0 (,) 1 ) |-> ( Y + -u Z ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y - Z ) ) ) |
| 177 |
174 176
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( Y - Z ) ) ) |
| 178 |
1
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> X C_ CC ) |
| 179 |
78 127 178 17 82
|
syl22anc |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 180 |
91
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` B ) = B ) |
| 181 |
180
|
reseq2d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) = ( ( CC _D F ) |` B ) ) |
| 182 |
179 181
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` B ) ) |
| 183 |
48
|
oveq2d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) = ( CC _D ( z e. B |-> ( F ` z ) ) ) ) |
| 184 |
|
dvfcn |
|- ( CC _D ( F |` B ) ) : dom ( CC _D ( F |` B ) ) --> CC |
| 185 |
100
|
feq2d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D ( F |` B ) ) : dom ( CC _D ( F |` B ) ) --> CC <-> ( CC _D ( F |` B ) ) : B --> CC ) ) |
| 186 |
184 185
|
mpbii |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( F |` B ) ) : B --> CC ) |
| 187 |
182
|
feq1d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D ( F |` B ) ) : B --> CC <-> ( ( CC _D F ) |` B ) : B --> CC ) ) |
| 188 |
186 187
|
mpbid |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` B ) : B --> CC ) |
| 189 |
188
|
feqmptd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` B ) = ( z e. B |-> ( ( ( CC _D F ) |` B ) ` z ) ) ) |
| 190 |
|
fvres |
|- ( z e. B -> ( ( ( CC _D F ) |` B ) ` z ) = ( ( CC _D F ) ` z ) ) |
| 191 |
190
|
mpteq2ia |
|- ( z e. B |-> ( ( ( CC _D F ) |` B ) ` z ) ) = ( z e. B |-> ( ( CC _D F ) ` z ) ) |
| 192 |
189 191
|
eqtrdi |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( CC _D F ) |` B ) = ( z e. B |-> ( ( CC _D F ) ` z ) ) ) |
| 193 |
182 183 192
|
3eqtr3d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( CC _D ( z e. B |-> ( F ` z ) ) ) = ( z e. B |-> ( ( CC _D F ) ` z ) ) ) |
| 194 |
|
fveq2 |
|- ( z = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( ( CC _D F ) ` z ) = ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
| 195 |
117 119 122 124 129 130 177 193 49 194
|
dvmptco |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 (,) 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 196 |
115 195
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 197 |
196
|
dmeqd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = dom ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 198 |
|
ovex |
|- ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V |
| 199 |
198
|
rgenw |
|- A. t e. ( 0 (,) 1 ) ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V |
| 200 |
|
dmmptg |
|- ( A. t e. ( 0 (,) 1 ) ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V -> dom ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( 0 (,) 1 ) ) |
| 201 |
199 200
|
mp1i |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( 0 (,) 1 ) ) |
| 202 |
197 201
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> dom ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) = ( 0 (,) 1 ) ) |
| 203 |
7
|
adantr |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> M e. RR ) |
| 204 |
123
|
abscld |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( Y - Z ) ) e. RR ) |
| 205 |
203 204
|
remulcld |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( M x. ( abs ` ( Y - Z ) ) ) e. RR ) |
| 206 |
196
|
fveq1d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) = ( ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ` t ) ) |
| 207 |
|
eqid |
|- ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
| 208 |
207
|
fvmpt2 |
|- ( ( t e. ( 0 (,) 1 ) /\ ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) e. _V ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ` t ) = ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
| 209 |
198 208
|
mpan2 |
|- ( t e. ( 0 (,) 1 ) -> ( ( t e. ( 0 (,) 1 ) |-> ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ` t ) = ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
| 210 |
206 209
|
sylan9eq |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) = ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) |
| 211 |
210
|
fveq2d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) = ( abs ` ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) ) |
| 212 |
|
dvfcn |
|- ( CC _D F ) : dom ( CC _D F ) --> CC |
| 213 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> B C_ dom ( CC _D F ) ) |
| 214 |
213 122
|
sseldd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. dom ( CC _D F ) ) |
| 215 |
|
ffvelcdm |
|- ( ( ( CC _D F ) : dom ( CC _D F ) --> CC /\ ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) e. dom ( CC _D F ) ) -> ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. CC ) |
| 216 |
212 214 215
|
sylancr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) e. CC ) |
| 217 |
216 124
|
absmuld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) x. ( Y - Z ) ) ) = ( ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) x. ( abs ` ( Y - Z ) ) ) ) |
| 218 |
211 217
|
eqtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) = ( ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) x. ( abs ` ( Y - Z ) ) ) ) |
| 219 |
216
|
abscld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) e. RR ) |
| 220 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> M e. RR ) |
| 221 |
124
|
abscld |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( Y - Z ) ) e. RR ) |
| 222 |
124
|
absge0d |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> 0 <_ ( abs ` ( Y - Z ) ) ) |
| 223 |
|
2fveq3 |
|- ( y = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( abs ` ( ( CC _D F ) ` y ) ) = ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) |
| 224 |
223
|
breq1d |
|- ( y = ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) -> ( ( abs ` ( ( CC _D F ) ` y ) ) <_ M <-> ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) <_ M ) ) |
| 225 |
8
|
ralrimiva |
|- ( ph -> A. x e. B ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) |
| 226 |
|
2fveq3 |
|- ( x = y -> ( abs ` ( ( CC _D F ) ` x ) ) = ( abs ` ( ( CC _D F ) ` y ) ) ) |
| 227 |
226
|
breq1d |
|- ( x = y -> ( ( abs ` ( ( CC _D F ) ` x ) ) <_ M <-> ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) ) |
| 228 |
227
|
cbvralvw |
|- ( A. x e. B ( abs ` ( ( CC _D F ) ` x ) ) <_ M <-> A. y e. B ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) |
| 229 |
225 228
|
sylib |
|- ( ph -> A. y e. B ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) |
| 230 |
229
|
ad2antrr |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> A. y e. B ( abs ` ( ( CC _D F ) ` y ) ) <_ M ) |
| 231 |
224 230 122
|
rspcdva |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) <_ M ) |
| 232 |
219 220 221 222 231
|
lemul1ad |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( ( abs ` ( ( CC _D F ) ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) x. ( abs ` ( Y - Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 233 |
218 232
|
eqbrtrd |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ t e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 234 |
233
|
ralrimiva |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> A. t e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 235 |
|
nfv |
|- F/ z ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) |
| 236 |
|
nfcv |
|- F/_ t abs |
| 237 |
|
nfcv |
|- F/_ t RR |
| 238 |
|
nfcv |
|- F/_ t _D |
| 239 |
|
nfmpt1 |
|- F/_ t ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
| 240 |
237 238 239
|
nfov |
|- F/_ t ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) |
| 241 |
|
nfcv |
|- F/_ t z |
| 242 |
240 241
|
nffv |
|- F/_ t ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) |
| 243 |
236 242
|
nffv |
|- F/_ t ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) |
| 244 |
|
nfcv |
|- F/_ t <_ |
| 245 |
|
nfcv |
|- F/_ t ( M x. ( abs ` ( Y - Z ) ) ) |
| 246 |
243 244 245
|
nfbr |
|- F/ t ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) |
| 247 |
|
2fveq3 |
|- ( t = z -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) ) |
| 248 |
247
|
breq1d |
|- ( t = z -> ( ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) <-> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) |
| 249 |
235 246 248
|
cbvralw |
|- ( A. t e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` t ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) <-> A. z e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 250 |
234 249
|
sylib |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> A. z e. ( 0 (,) 1 ) ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 251 |
250
|
r19.21bi |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ z e. ( 0 (,) 1 ) ) -> ( abs ` ( ( RR _D ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ) ` z ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 252 |
11 12 104 202 205 251
|
dvlip |
|- ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ ( 1 e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) ) <_ ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
| 253 |
9 10 252
|
mpanr12 |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) ) <_ ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) ) |
| 254 |
|
oveq2 |
|- ( t = 1 -> ( Y x. t ) = ( Y x. 1 ) ) |
| 255 |
|
oveq2 |
|- ( t = 1 -> ( 1 - t ) = ( 1 - 1 ) ) |
| 256 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 257 |
255 256
|
eqtrdi |
|- ( t = 1 -> ( 1 - t ) = 0 ) |
| 258 |
257
|
oveq2d |
|- ( t = 1 -> ( Z x. ( 1 - t ) ) = ( Z x. 0 ) ) |
| 259 |
254 258
|
oveq12d |
|- ( t = 1 -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) = ( ( Y x. 1 ) + ( Z x. 0 ) ) ) |
| 260 |
259
|
fveq2d |
|- ( t = 1 -> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) = ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) ) |
| 261 |
|
eqid |
|- ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) |
| 262 |
|
fvex |
|- ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) e. _V |
| 263 |
260 261 262
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) = ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) ) |
| 264 |
9 263
|
ax-mp |
|- ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) = ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) |
| 265 |
28
|
mul01d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. 0 ) = 0 ) |
| 266 |
145 265
|
oveq12d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 1 ) + ( Z x. 0 ) ) = ( Y + 0 ) ) |
| 267 |
19
|
addridd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y + 0 ) = Y ) |
| 268 |
266 267
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 1 ) + ( Z x. 0 ) ) = Y ) |
| 269 |
268
|
fveq2d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F ` ( ( Y x. 1 ) + ( Z x. 0 ) ) ) = ( F ` Y ) ) |
| 270 |
264 269
|
eqtrid |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) = ( F ` Y ) ) |
| 271 |
|
oveq2 |
|- ( t = 0 -> ( Y x. t ) = ( Y x. 0 ) ) |
| 272 |
|
oveq2 |
|- ( t = 0 -> ( 1 - t ) = ( 1 - 0 ) ) |
| 273 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 274 |
272 273
|
eqtrdi |
|- ( t = 0 -> ( 1 - t ) = 1 ) |
| 275 |
274
|
oveq2d |
|- ( t = 0 -> ( Z x. ( 1 - t ) ) = ( Z x. 1 ) ) |
| 276 |
271 275
|
oveq12d |
|- ( t = 0 -> ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) = ( ( Y x. 0 ) + ( Z x. 1 ) ) ) |
| 277 |
276
|
fveq2d |
|- ( t = 0 -> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) = ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) ) |
| 278 |
|
fvex |
|- ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) e. _V |
| 279 |
277 261 278
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) = ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) ) |
| 280 |
10 279
|
ax-mp |
|- ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) = ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) |
| 281 |
19
|
mul01d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Y x. 0 ) = 0 ) |
| 282 |
28
|
mulridd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( Z x. 1 ) = Z ) |
| 283 |
281 282
|
oveq12d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 0 ) + ( Z x. 1 ) ) = ( 0 + Z ) ) |
| 284 |
28
|
addlidd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( 0 + Z ) = Z ) |
| 285 |
283 284
|
eqtrd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( Y x. 0 ) + ( Z x. 1 ) ) = Z ) |
| 286 |
285
|
fveq2d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( F ` ( ( Y x. 0 ) + ( Z x. 1 ) ) ) = ( F ` Z ) ) |
| 287 |
280 286
|
eqtrid |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) = ( F ` Z ) ) |
| 288 |
270 287
|
oveq12d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) = ( ( F ` Y ) - ( F ` Z ) ) ) |
| 289 |
288
|
fveq2d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 1 ) - ( ( t e. ( 0 [,] 1 ) |-> ( F ` ( ( Y x. t ) + ( Z x. ( 1 - t ) ) ) ) ) ` 0 ) ) ) = ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) ) |
| 290 |
273
|
fveq2i |
|- ( abs ` ( 1 - 0 ) ) = ( abs ` 1 ) |
| 291 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 292 |
290 291
|
eqtri |
|- ( abs ` ( 1 - 0 ) ) = 1 |
| 293 |
292
|
oveq2i |
|- ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) = ( ( M x. ( abs ` ( Y - Z ) ) ) x. 1 ) |
| 294 |
205
|
recnd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( M x. ( abs ` ( Y - Z ) ) ) e. CC ) |
| 295 |
294
|
mulridd |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( M x. ( abs ` ( Y - Z ) ) ) x. 1 ) = ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 296 |
293 295
|
eqtrid |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( ( M x. ( abs ` ( Y - Z ) ) ) x. ( abs ` ( 1 - 0 ) ) ) = ( M x. ( abs ` ( Y - Z ) ) ) ) |
| 297 |
253 289 296
|
3brtr3d |
|- ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |