| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. V /\ F : A --> CC ) -> A e. V ) |
| 2 |
|
ffn |
|- ( F : A --> CC -> F Fn A ) |
| 3 |
2
|
adantl |
|- ( ( A e. V /\ F : A --> CC ) -> F Fn A ) |
| 4 |
|
c0ex |
|- 0 e. _V |
| 5 |
4
|
fconst |
|- ( A X. { 0 } ) : A --> { 0 } |
| 6 |
|
ffn |
|- ( ( A X. { 0 } ) : A --> { 0 } -> ( A X. { 0 } ) Fn A ) |
| 7 |
5 6
|
mp1i |
|- ( ( A e. V /\ F : A --> CC ) -> ( A X. { 0 } ) Fn A ) |
| 8 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
| 9 |
|
ffvelcdm |
|- ( ( F : A --> CC /\ x e. A ) -> ( F ` x ) e. CC ) |
| 10 |
9
|
subidd |
|- ( ( F : A --> CC /\ x e. A ) -> ( ( F ` x ) - ( F ` x ) ) = 0 ) |
| 11 |
10
|
adantll |
|- ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( ( F ` x ) - ( F ` x ) ) = 0 ) |
| 12 |
4
|
fvconst2 |
|- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 13 |
12
|
adantl |
|- ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 14 |
11 13
|
eqtr4d |
|- ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( ( F ` x ) - ( F ` x ) ) = ( ( A X. { 0 } ) ` x ) ) |
| 15 |
1 3 3 7 8 8 14
|
offveq |
|- ( ( A e. V /\ F : A --> CC ) -> ( F oF - F ) = ( A X. { 0 } ) ) |