| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. V /\ F : A --> CC ) -> A e. V ) | 
						
							| 2 |  | ffn |  |-  ( F : A --> CC -> F Fn A ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. V /\ F : A --> CC ) -> F Fn A ) | 
						
							| 4 |  | c0ex |  |-  0 e. _V | 
						
							| 5 | 4 | fconst |  |-  ( A X. { 0 } ) : A --> { 0 } | 
						
							| 6 |  | ffn |  |-  ( ( A X. { 0 } ) : A --> { 0 } -> ( A X. { 0 } ) Fn A ) | 
						
							| 7 | 5 6 | mp1i |  |-  ( ( A e. V /\ F : A --> CC ) -> ( A X. { 0 } ) Fn A ) | 
						
							| 8 |  | eqidd |  |-  ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 9 |  | ffvelcdm |  |-  ( ( F : A --> CC /\ x e. A ) -> ( F ` x ) e. CC ) | 
						
							| 10 | 9 | subidd |  |-  ( ( F : A --> CC /\ x e. A ) -> ( ( F ` x ) - ( F ` x ) ) = 0 ) | 
						
							| 11 | 10 | adantll |  |-  ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( ( F ` x ) - ( F ` x ) ) = 0 ) | 
						
							| 12 | 4 | fvconst2 |  |-  ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) | 
						
							| 14 | 11 13 | eqtr4d |  |-  ( ( ( A e. V /\ F : A --> CC ) /\ x e. A ) -> ( ( F ` x ) - ( F ` x ) ) = ( ( A X. { 0 } ) ` x ) ) | 
						
							| 15 | 1 3 3 7 8 8 14 | offveq |  |-  ( ( A e. V /\ F : A --> CC ) -> ( F oF - F ) = ( A X. { 0 } ) ) |