Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐴 ∈ 𝑉 ) |
2 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 Fn 𝐴 ) |
4 |
|
c0ex |
⊢ 0 ∈ V |
5 |
4
|
fconst |
⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } |
6 |
|
ffn |
⊢ ( ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
7 |
5 6
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
8 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
10 |
9
|
subidd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
11 |
10
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
12 |
4
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
14 |
11 13
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) |
15 |
1 3 3 7 8 8 14
|
offveq |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f − 𝐹 ) = ( 𝐴 × { 0 } ) ) |