| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ  →  𝐹  Fn  𝐴 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  →  𝐹  Fn  𝐴 ) | 
						
							| 4 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 5 | 4 | fconst | ⊢ ( 𝐴  ×  { 0 } ) : 𝐴 ⟶ { 0 } | 
						
							| 6 |  | ffn | ⊢ ( ( 𝐴  ×  { 0 } ) : 𝐴 ⟶ { 0 }  →  ( 𝐴  ×  { 0 } )  Fn  𝐴 ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  →  ( 𝐴  ×  { 0 } )  Fn  𝐴 ) | 
						
							| 8 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 9 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 10 | 9 | subidd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) )  =  0 ) | 
						
							| 11 | 10 | adantll | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) )  =  0 ) | 
						
							| 12 | 4 | fvconst2 | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 )  =  0 ) | 
						
							| 14 | 11 13 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  −  ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐴  ×  { 0 } ) ‘ 𝑥 ) ) | 
						
							| 15 | 1 3 3 7 8 8 14 | offveq | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ ℂ )  →  ( 𝐹  ∘f   −  𝐹 )  =  ( 𝐴  ×  { 0 } ) ) |