| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐴 ∈ 𝑉 ) |
| 2 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 Fn 𝐴 ) |
| 4 |
|
c0ex |
⊢ 0 ∈ V |
| 5 |
4
|
fconst |
⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } |
| 6 |
|
ffn |
⊢ ( ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
| 7 |
5 6
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
| 8 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 9 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 10 |
9
|
subidd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 11 |
10
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 12 |
4
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 14 |
11 13
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) ) |
| 15 |
1 3 3 7 8 8 14
|
offveq |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∘f − 𝐹 ) = ( 𝐴 × { 0 } ) ) |