Metamath Proof Explorer


Theorem ofsubid

Description: Function analogue of subid . (Contributed by Steve Rodriguez, 5-Nov-2015)

Ref Expression
Assertion ofsubid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹f𝐹 ) = ( 𝐴 × { 0 } ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) → 𝐴𝑉 )
2 ffn ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 )
3 2 adantl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 Fn 𝐴 )
4 c0ex 0 ∈ V
5 4 fconst ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 }
6 ffn ( ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } → ( 𝐴 × { 0 } ) Fn 𝐴 )
7 5 6 mp1i ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐴 × { 0 } ) Fn 𝐴 )
8 eqidd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
9 ffvelrn ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ℂ )
10 9 subidd ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥𝐴 ) → ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) = 0 )
11 10 adantll ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥𝐴 ) → ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) = 0 )
12 4 fvconst2 ( 𝑥𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 )
13 12 adantl ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 )
14 11 13 eqtr4d ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) ∧ 𝑥𝐴 ) → ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) = ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) )
15 1 3 3 7 8 8 14 offveq ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹f𝐹 ) = ( 𝐴 × { 0 } ) )