Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steve Rodriguez
Function operations
ofsubid
Next ⟩
ofmul12
Metamath Proof Explorer
Ascii
Unicode
Theorem
ofsubid
Description:
Function analogue of
subid
.
(Contributed by
Steve Rodriguez
, 5-Nov-2015)
Ref
Expression
Assertion
ofsubid
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
→
F
−
f
F
=
A
×
0
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
→
A
∈
V
2
ffn
⊢
F
:
A
⟶
ℂ
→
F
Fn
A
3
2
adantl
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
→
F
Fn
A
4
c0ex
⊢
0
∈
V
5
4
fconst
⊢
A
×
0
:
A
⟶
0
6
ffn
⊢
A
×
0
:
A
⟶
0
→
A
×
0
Fn
A
7
5
6
mp1i
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
→
A
×
0
Fn
A
8
eqidd
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
∧
x
∈
A
→
F
⁡
x
=
F
⁡
x
9
ffvelrn
⊢
F
:
A
⟶
ℂ
∧
x
∈
A
→
F
⁡
x
∈
ℂ
10
9
subidd
⊢
F
:
A
⟶
ℂ
∧
x
∈
A
→
F
⁡
x
−
F
⁡
x
=
0
11
10
adantll
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
∧
x
∈
A
→
F
⁡
x
−
F
⁡
x
=
0
12
4
fvconst2
⊢
x
∈
A
→
A
×
0
⁡
x
=
0
13
12
adantl
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
∧
x
∈
A
→
A
×
0
⁡
x
=
0
14
11
13
eqtr4d
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
∧
x
∈
A
→
F
⁡
x
−
F
⁡
x
=
A
×
0
⁡
x
15
1
3
3
7
8
8
14
offveq
⊢
A
∈
V
∧
F
:
A
⟶
ℂ
→
F
−
f
F
=
A
×
0