| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expgrowthi.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | expgrowthi.k | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 3 |  | expgrowthi.y0 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | expgrowthi.yt | ⊢ 𝑌  =  ( 𝑡  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑡 ) ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑡  =  𝑦  →  ( 𝐾  ·  𝑡 )  =  ( 𝐾  ·  𝑦 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑡  =  𝑦  →  ( exp ‘ ( 𝐾  ·  𝑡 ) )  =  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑡  =  𝑦  →  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑡 ) ) )  =  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) | 
						
							| 8 | 7 | cbvmptv | ⊢ ( 𝑡  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑡 ) ) ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) | 
						
							| 9 | 4 8 | eqtri | ⊢ 𝑌  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) | 
						
							| 10 | 9 | oveq2i | ⊢ ( 𝑆  D  𝑌 )  =  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) | 
						
							| 11 |  | elpri | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ ) ) | 
						
							| 12 |  | eleq2 | ⊢ ( 𝑆  =  ℝ  →  ( 𝑦  ∈  𝑆  ↔  𝑦  ∈  ℝ ) ) | 
						
							| 13 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 14 | 12 13 | biimtrdi | ⊢ ( 𝑆  =  ℝ  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  ℂ ) ) | 
						
							| 15 |  | eleq2 | ⊢ ( 𝑆  =  ℂ  →  ( 𝑦  ∈  𝑆  ↔  𝑦  ∈  ℂ ) ) | 
						
							| 16 | 15 | biimpd | ⊢ ( 𝑆  =  ℂ  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  ℂ ) ) | 
						
							| 17 | 14 16 | jaoi | ⊢ ( ( 𝑆  =  ℝ  ∨  𝑆  =  ℂ )  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  ℂ ) ) | 
						
							| 18 | 1 11 17 | 3syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  ℂ ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ℂ ) | 
						
							| 20 |  | mulcl | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝐾  ·  𝑦 )  ∈  ℂ ) | 
						
							| 21 | 2 20 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℂ )  →  ( 𝐾  ·  𝑦 )  ∈  ℂ ) | 
						
							| 22 |  | efcl | ⊢ ( ( 𝐾  ·  𝑦 )  ∈  ℂ  →  ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℂ )  →  ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ ) | 
						
							| 24 | 19 23 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ ) | 
						
							| 25 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) )  ∈  V ) | 
						
							| 26 |  | cnelprrecn | ⊢ ℂ  ∈  { ℝ ,  ℂ } | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  { ℝ ,  ℂ } ) | 
						
							| 28 | 19 21 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐾  ·  𝑦 )  ∈  ℂ ) | 
						
							| 29 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝐾  ∈  ℂ ) | 
						
							| 30 |  | efcl | ⊢ ( 𝑥  ∈  ℂ  →  ( exp ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( exp ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 32 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  1  ∈  ℂ ) | 
						
							| 33 | 1 | dvmptid | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  𝑦 ) )  =  ( 𝑦  ∈  𝑆  ↦  1 ) ) | 
						
							| 34 | 1 19 32 33 2 | dvmptcmul | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  𝑦 ) ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  1 ) ) ) | 
						
							| 35 | 2 | mulridd | ⊢ ( 𝜑  →  ( 𝐾  ·  1 )  =  𝐾 ) | 
						
							| 36 | 35 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  1 ) )  =  ( 𝑦  ∈  𝑆  ↦  𝐾 ) ) | 
						
							| 37 | 34 36 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  𝑦 ) ) )  =  ( 𝑦  ∈  𝑆  ↦  𝐾 ) ) | 
						
							| 38 |  | dvef | ⊢ ( ℂ  D  exp )  =  exp | 
						
							| 39 |  | eff | ⊢ exp : ℂ ⟶ ℂ | 
						
							| 40 |  | ffn | ⊢ ( exp : ℂ ⟶ ℂ  →  exp  Fn  ℂ ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ exp  Fn  ℂ | 
						
							| 42 |  | dffn5 | ⊢ ( exp  Fn  ℂ  ↔  exp  =  ( 𝑥  ∈  ℂ  ↦  ( exp ‘ 𝑥 ) ) ) | 
						
							| 43 | 41 42 | mpbi | ⊢ exp  =  ( 𝑥  ∈  ℂ  ↦  ( exp ‘ 𝑥 ) ) | 
						
							| 44 | 43 | oveq2i | ⊢ ( ℂ  D  exp )  =  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( exp ‘ 𝑥 ) ) ) | 
						
							| 45 | 38 44 43 | 3eqtr3i | ⊢ ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( exp ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( exp ‘ 𝑥 ) ) | 
						
							| 46 | 45 | a1i | ⊢ ( 𝜑  →  ( ℂ  D  ( 𝑥  ∈  ℂ  ↦  ( exp ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  ( exp ‘ 𝑥 ) ) ) | 
						
							| 47 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐾  ·  𝑦 )  →  ( exp ‘ 𝑥 )  =  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) | 
						
							| 48 | 1 27 28 29 31 31 37 46 47 47 | dvmptco | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) )  =  ( 𝑦  ∈  𝑆  ↦  ( ( exp ‘ ( 𝐾  ·  𝑦 ) )  ·  𝐾 ) ) ) | 
						
							| 49 |  | mulcom | ⊢ ( ( ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ  ∧  𝐾  ∈  ℂ )  →  ( ( exp ‘ ( 𝐾  ·  𝑦 ) )  ·  𝐾 )  =  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) | 
						
							| 50 | 24 2 49 | syl2anr | ⊢ ( ( 𝜑  ∧  ( 𝜑  ∧  𝑦  ∈  𝑆 ) )  →  ( ( exp ‘ ( 𝐾  ·  𝑦 ) )  ·  𝐾 )  =  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) | 
						
							| 51 | 50 | anabss5 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( ( exp ‘ ( 𝐾  ·  𝑦 ) )  ·  𝐾 )  =  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) | 
						
							| 52 | 51 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑆  ↦  ( ( exp ‘ ( 𝐾  ·  𝑦 ) )  ·  𝐾 ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) | 
						
							| 53 | 48 52 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) | 
						
							| 54 | 1 24 25 53 3 | dvmptcmul | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) ) | 
						
							| 55 | 3 2 24 | 3anim123i | ⊢ ( ( 𝜑  ∧  𝜑  ∧  ( 𝜑  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐶  ∈  ℂ  ∧  𝐾  ∈  ℂ  ∧  ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ ) ) | 
						
							| 56 | 55 | 3anidm12 | ⊢ ( ( 𝜑  ∧  ( 𝜑  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐶  ∈  ℂ  ∧  𝐾  ∈  ℂ  ∧  ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ ) ) | 
						
							| 57 | 56 | anabss5 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐶  ∈  ℂ  ∧  𝐾  ∈  ℂ  ∧  ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ ) ) | 
						
							| 58 |  | mul12 | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐾  ∈  ℂ  ∧  ( exp ‘ ( 𝐾  ·  𝑦 ) )  ∈  ℂ )  →  ( 𝐶  ·  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) )  =  ( 𝐾  ·  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐶  ·  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) )  =  ( 𝐾  ·  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) | 
						
							| 60 | 59 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( 𝐾  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) ) | 
						
							| 61 | 54 60 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆  D  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) ) | 
						
							| 62 | 10 61 | eqtrid | ⊢ ( 𝜑  →  ( 𝑆  D  𝑌 )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) ) | 
						
							| 63 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) )  ∈  V ) | 
						
							| 64 |  | fconstmpt | ⊢ ( 𝑆  ×  { 𝐾 } )  =  ( 𝑦  ∈  𝑆  ↦  𝐾 ) | 
						
							| 65 | 64 | a1i | ⊢ ( 𝜑  →  ( 𝑆  ×  { 𝐾 } )  =  ( 𝑦  ∈  𝑆  ↦  𝐾 ) ) | 
						
							| 66 | 9 | a1i | ⊢ ( 𝜑  →  𝑌  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) | 
						
							| 67 | 1 29 63 65 66 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑆  ×  { 𝐾 } )  ∘f   ·  𝑌 )  =  ( 𝑦  ∈  𝑆  ↦  ( 𝐾  ·  ( 𝐶  ·  ( exp ‘ ( 𝐾  ·  𝑦 ) ) ) ) ) ) | 
						
							| 68 | 62 67 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑆  D  𝑌 )  =  ( ( 𝑆  ×  { 𝐾 } )  ∘f   ·  𝑌 ) ) |