| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expgrowthi.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
expgrowthi.k |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 3 |
|
expgrowthi.y0 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
expgrowthi.yt |
⊢ 𝑌 = ( 𝑡 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑡 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑡 = 𝑦 → ( 𝐾 · 𝑡 ) = ( 𝐾 · 𝑦 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑡 = 𝑦 → ( exp ‘ ( 𝐾 · 𝑡 ) ) = ( exp ‘ ( 𝐾 · 𝑦 ) ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑡 = 𝑦 → ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑡 ) ) ) = ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) |
| 8 |
7
|
cbvmptv |
⊢ ( 𝑡 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑡 ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) |
| 9 |
4 8
|
eqtri |
⊢ 𝑌 = ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) |
| 10 |
9
|
oveq2i |
⊢ ( 𝑆 D 𝑌 ) = ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) |
| 11 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 12 |
|
eleq2 |
⊢ ( 𝑆 = ℝ → ( 𝑦 ∈ 𝑆 ↔ 𝑦 ∈ ℝ ) ) |
| 13 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 14 |
12 13
|
biimtrdi |
⊢ ( 𝑆 = ℝ → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) ) |
| 15 |
|
eleq2 |
⊢ ( 𝑆 = ℂ → ( 𝑦 ∈ 𝑆 ↔ 𝑦 ∈ ℂ ) ) |
| 16 |
15
|
biimpd |
⊢ ( 𝑆 = ℂ → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) ) |
| 17 |
14 16
|
jaoi |
⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) ) |
| 18 |
1 11 17
|
3syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ ) ) |
| 19 |
18
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 20 |
|
mulcl |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐾 · 𝑦 ) ∈ ℂ ) |
| 21 |
2 20
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐾 · 𝑦 ) ∈ ℂ ) |
| 22 |
|
efcl |
⊢ ( ( 𝐾 · 𝑦 ) ∈ ℂ → ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ) |
| 24 |
19 23
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ) |
| 25 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ∈ V ) |
| 26 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
| 28 |
19 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐾 · 𝑦 ) ∈ ℂ ) |
| 29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ ℂ ) |
| 30 |
|
efcl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 32 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ ℂ ) |
| 33 |
1
|
dvmptid |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ 𝑦 ) ) = ( 𝑦 ∈ 𝑆 ↦ 1 ) ) |
| 34 |
1 19 32 33 2
|
dvmptcmul |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · 𝑦 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · 1 ) ) ) |
| 35 |
2
|
mulridd |
⊢ ( 𝜑 → ( 𝐾 · 1 ) = 𝐾 ) |
| 36 |
35
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · 1 ) ) = ( 𝑦 ∈ 𝑆 ↦ 𝐾 ) ) |
| 37 |
34 36
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · 𝑦 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ 𝐾 ) ) |
| 38 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
| 39 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 40 |
|
ffn |
⊢ ( exp : ℂ ⟶ ℂ → exp Fn ℂ ) |
| 41 |
39 40
|
ax-mp |
⊢ exp Fn ℂ |
| 42 |
|
dffn5 |
⊢ ( exp Fn ℂ ↔ exp = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 43 |
41 42
|
mpbi |
⊢ exp = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) |
| 44 |
43
|
oveq2i |
⊢ ( ℂ D exp ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 45 |
38 44 43
|
3eqtr3i |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐾 · 𝑦 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( 𝐾 · 𝑦 ) ) ) |
| 48 |
1 27 28 29 31 31 37 46 47 47
|
dvmptco |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ( exp ‘ ( 𝐾 · 𝑦 ) ) · 𝐾 ) ) ) |
| 49 |
|
mulcom |
⊢ ( ( ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( exp ‘ ( 𝐾 · 𝑦 ) ) · 𝐾 ) = ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) |
| 50 |
24 2 49
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( exp ‘ ( 𝐾 · 𝑦 ) ) · 𝐾 ) = ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) |
| 51 |
50
|
anabss5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( exp ‘ ( 𝐾 · 𝑦 ) ) · 𝐾 ) = ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) |
| 52 |
51
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ ( ( exp ‘ ( 𝐾 · 𝑦 ) ) · 𝐾 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) |
| 53 |
48 52
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) |
| 54 |
1 24 25 53 3
|
dvmptcmul |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) ) |
| 55 |
3 2 24
|
3anim123i |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ) ) |
| 56 |
55
|
3anidm12 |
⊢ ( ( 𝜑 ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ) ) |
| 57 |
56
|
anabss5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ) ) |
| 58 |
|
mul12 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ( exp ‘ ( 𝐾 · 𝑦 ) ) ∈ ℂ ) → ( 𝐶 · ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) = ( 𝐾 · ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) |
| 59 |
57 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐶 · ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) = ( 𝐾 · ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) |
| 60 |
59
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( 𝐾 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) ) |
| 61 |
54 60
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) ) |
| 62 |
10 61
|
eqtrid |
⊢ ( 𝜑 → ( 𝑆 D 𝑌 ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) ) |
| 63 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ∈ V ) |
| 64 |
|
fconstmpt |
⊢ ( 𝑆 × { 𝐾 } ) = ( 𝑦 ∈ 𝑆 ↦ 𝐾 ) |
| 65 |
64
|
a1i |
⊢ ( 𝜑 → ( 𝑆 × { 𝐾 } ) = ( 𝑦 ∈ 𝑆 ↦ 𝐾 ) ) |
| 66 |
9
|
a1i |
⊢ ( 𝜑 → 𝑌 = ( 𝑦 ∈ 𝑆 ↦ ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) |
| 67 |
1 29 63 65 66
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑆 × { 𝐾 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐾 · ( 𝐶 · ( exp ‘ ( 𝐾 · 𝑦 ) ) ) ) ) ) |
| 68 |
62 67
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑆 D 𝑌 ) = ( ( 𝑆 × { 𝐾 } ) ∘f · 𝑌 ) ) |