| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 2 |
|
difexg |
⊢ ( ℋ ∈ V → ( ℋ ∖ 0ℋ ) ∈ V ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ℋ ∖ 0ℋ ) ∈ V |
| 4 |
3
|
rabex |
⊢ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ∈ V |
| 5 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑦 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ↔ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ) ) |
| 8 |
7
|
rabbidv |
⊢ ( 𝑡 = 𝑇 → { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } = { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ) |
| 9 |
|
df-eigvec |
⊢ eigvec = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ) |
| 10 |
4 1 1 8 9
|
fvmptmap |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigvec ‘ 𝑇 ) = { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ) |