Metamath Proof Explorer


Theorem elnonrel

Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020)

Ref Expression
Assertion elnonrel ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 𝐴 ) ↔ ( ∅ ∈ 𝐴 ∧ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )

Proof

Step Hyp Ref Expression
1 nonrel ( 𝐴 𝐴 ) = ( 𝐴 ∖ ( V × V ) )
2 1 eleq2i ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 𝐴 ) ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 ∖ ( V × V ) ) )
3 eldif ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 ∖ ( V × V ) ) ↔ ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝐴 ∧ ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( V × V ) ) )
4 opelxp ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( V × V ) ↔ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )
5 4 notbii ( ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( V × V ) ↔ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )
6 5 anbi2i ( ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝐴 ∧ ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( V × V ) ) ↔ ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝐴 ∧ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )
7 opprc ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ⟨ 𝑋 , 𝑌 ⟩ = ∅ )
8 7 eleq1d ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) )
9 8 pm5.32ri ( ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝐴 ∧ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) ↔ ( ∅ ∈ 𝐴 ∧ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )
10 6 9 bitri ( ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝐴 ∧ ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( V × V ) ) ↔ ( ∅ ∈ 𝐴 ∧ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )
11 3 10 bitri ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 ∖ ( V × V ) ) ↔ ( ∅ ∈ 𝐴 ∧ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )
12 2 11 bitri ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 𝐴 ) ↔ ( ∅ ∈ 𝐴 ∧ ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) )