| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvss |
⊢ ( 𝐴 ⊆ 𝐵 → ◡ 𝐴 ⊆ ◡ 𝐵 ) |
| 2 |
|
cnvss |
⊢ ( ◡ 𝐴 ⊆ ◡ 𝐵 → ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 ) |
| 3 |
|
dfrel2 |
⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) |
| 4 |
3
|
biimpi |
⊢ ( Rel 𝐴 → ◡ ◡ 𝐴 = 𝐴 ) |
| 5 |
4
|
eqcomd |
⊢ ( Rel 𝐴 → 𝐴 = ◡ ◡ 𝐴 ) |
| 6 |
5
|
adantr |
⊢ ( ( Rel 𝐴 ∧ ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 ) → 𝐴 = ◡ ◡ 𝐴 ) |
| 7 |
|
id |
⊢ ( ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 → ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 ) |
| 8 |
|
cnvcnvss |
⊢ ◡ ◡ 𝐵 ⊆ 𝐵 |
| 9 |
7 8
|
sstrdi |
⊢ ( ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 → ◡ ◡ 𝐴 ⊆ 𝐵 ) |
| 10 |
9
|
adantl |
⊢ ( ( Rel 𝐴 ∧ ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 ) → ◡ ◡ 𝐴 ⊆ 𝐵 ) |
| 11 |
6 10
|
eqsstrd |
⊢ ( ( Rel 𝐴 ∧ ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 12 |
11
|
ex |
⊢ ( Rel 𝐴 → ( ◡ ◡ 𝐴 ⊆ ◡ ◡ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 13 |
2 12
|
syl5 |
⊢ ( Rel 𝐴 → ( ◡ 𝐴 ⊆ ◡ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 14 |
1 13
|
impbid2 |
⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ◡ 𝐴 ⊆ ◡ 𝐵 ) ) |