| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvss | ⊢ ( 𝐴  ⊆  𝐵  →  ◡ 𝐴  ⊆  ◡ 𝐵 ) | 
						
							| 2 |  | cnvss | ⊢ ( ◡ 𝐴  ⊆  ◡ 𝐵  →  ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵 ) | 
						
							| 3 |  | dfrel2 | ⊢ ( Rel  𝐴  ↔  ◡ ◡ 𝐴  =  𝐴 ) | 
						
							| 4 | 3 | biimpi | ⊢ ( Rel  𝐴  →  ◡ ◡ 𝐴  =  𝐴 ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( Rel  𝐴  →  𝐴  =  ◡ ◡ 𝐴 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( Rel  𝐴  ∧  ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵 )  →  𝐴  =  ◡ ◡ 𝐴 ) | 
						
							| 7 |  | id | ⊢ ( ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵  →  ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵 ) | 
						
							| 8 |  | cnvcnvss | ⊢ ◡ ◡ 𝐵  ⊆  𝐵 | 
						
							| 9 | 7 8 | sstrdi | ⊢ ( ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵  →  ◡ ◡ 𝐴  ⊆  𝐵 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( Rel  𝐴  ∧  ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵 )  →  ◡ ◡ 𝐴  ⊆  𝐵 ) | 
						
							| 11 | 6 10 | eqsstrd | ⊢ ( ( Rel  𝐴  ∧  ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 12 | 11 | ex | ⊢ ( Rel  𝐴  →  ( ◡ ◡ 𝐴  ⊆  ◡ ◡ 𝐵  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 13 | 2 12 | syl5 | ⊢ ( Rel  𝐴  →  ( ◡ 𝐴  ⊆  ◡ 𝐵  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 14 | 1 13 | impbid2 | ⊢ ( Rel  𝐴  →  ( 𝐴  ⊆  𝐵  ↔  ◡ 𝐴  ⊆  ◡ 𝐵 ) ) |