Metamath Proof Explorer


Theorem cnvssb

Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cnvssb ( Rel 𝐴 → ( 𝐴𝐵 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cnvss ( 𝐴𝐵 𝐴 𝐵 )
2 cnvss ( 𝐴 𝐵 𝐴 𝐵 )
3 dfrel2 ( Rel 𝐴 𝐴 = 𝐴 )
4 3 biimpi ( Rel 𝐴 𝐴 = 𝐴 )
5 4 eqcomd ( Rel 𝐴𝐴 = 𝐴 )
6 5 adantr ( ( Rel 𝐴 𝐴 𝐵 ) → 𝐴 = 𝐴 )
7 id ( 𝐴 𝐵 𝐴 𝐵 )
8 cnvcnvss 𝐵𝐵
9 7 8 sstrdi ( 𝐴 𝐵 𝐴𝐵 )
10 9 adantl ( ( Rel 𝐴 𝐴 𝐵 ) → 𝐴𝐵 )
11 6 10 eqsstrd ( ( Rel 𝐴 𝐴 𝐵 ) → 𝐴𝐵 )
12 11 ex ( Rel 𝐴 → ( 𝐴 𝐵𝐴𝐵 ) )
13 2 12 syl5 ( Rel 𝐴 → ( 𝐴 𝐵𝐴𝐵 ) )
14 1 13 impbid2 ( Rel 𝐴 → ( 𝐴𝐵 𝐴 𝐵 ) )