| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvss |  |-  ( A C_ B -> `' A C_ `' B ) | 
						
							| 2 |  | cnvss |  |-  ( `' A C_ `' B -> `' `' A C_ `' `' B ) | 
						
							| 3 |  | dfrel2 |  |-  ( Rel A <-> `' `' A = A ) | 
						
							| 4 | 3 | biimpi |  |-  ( Rel A -> `' `' A = A ) | 
						
							| 5 | 4 | eqcomd |  |-  ( Rel A -> A = `' `' A ) | 
						
							| 6 | 5 | adantr |  |-  ( ( Rel A /\ `' `' A C_ `' `' B ) -> A = `' `' A ) | 
						
							| 7 |  | id |  |-  ( `' `' A C_ `' `' B -> `' `' A C_ `' `' B ) | 
						
							| 8 |  | cnvcnvss |  |-  `' `' B C_ B | 
						
							| 9 | 7 8 | sstrdi |  |-  ( `' `' A C_ `' `' B -> `' `' A C_ B ) | 
						
							| 10 | 9 | adantl |  |-  ( ( Rel A /\ `' `' A C_ `' `' B ) -> `' `' A C_ B ) | 
						
							| 11 | 6 10 | eqsstrd |  |-  ( ( Rel A /\ `' `' A C_ `' `' B ) -> A C_ B ) | 
						
							| 12 | 11 | ex |  |-  ( Rel A -> ( `' `' A C_ `' `' B -> A C_ B ) ) | 
						
							| 13 | 2 12 | syl5 |  |-  ( Rel A -> ( `' A C_ `' B -> A C_ B ) ) | 
						
							| 14 | 1 13 | impbid2 |  |-  ( Rel A -> ( A C_ B <-> `' A C_ `' B ) ) |