Step |
Hyp |
Ref |
Expression |
1 |
|
cnvss |
|- ( A C_ B -> `' A C_ `' B ) |
2 |
|
cnvss |
|- ( `' A C_ `' B -> `' `' A C_ `' `' B ) |
3 |
|
dfrel2 |
|- ( Rel A <-> `' `' A = A ) |
4 |
3
|
biimpi |
|- ( Rel A -> `' `' A = A ) |
5 |
4
|
eqcomd |
|- ( Rel A -> A = `' `' A ) |
6 |
5
|
adantr |
|- ( ( Rel A /\ `' `' A C_ `' `' B ) -> A = `' `' A ) |
7 |
|
id |
|- ( `' `' A C_ `' `' B -> `' `' A C_ `' `' B ) |
8 |
|
cnvcnvss |
|- `' `' B C_ B |
9 |
7 8
|
sstrdi |
|- ( `' `' A C_ `' `' B -> `' `' A C_ B ) |
10 |
9
|
adantl |
|- ( ( Rel A /\ `' `' A C_ `' `' B ) -> `' `' A C_ B ) |
11 |
6 10
|
eqsstrd |
|- ( ( Rel A /\ `' `' A C_ `' `' B ) -> A C_ B ) |
12 |
11
|
ex |
|- ( Rel A -> ( `' `' A C_ `' `' B -> A C_ B ) ) |
13 |
2 12
|
syl5 |
|- ( Rel A -> ( `' A C_ `' B -> A C_ B ) ) |
14 |
1 13
|
impbid2 |
|- ( Rel A -> ( A C_ B <-> `' A C_ `' B ) ) |