Metamath Proof Explorer


Theorem elnonrel

Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020)

Ref Expression
Assertion elnonrel XYAA-1-1A¬XVYV

Proof

Step Hyp Ref Expression
1 nonrel AA-1-1=AV×V
2 1 eleq2i XYAA-1-1XYAV×V
3 eldif XYAV×VXYA¬XYV×V
4 opelxp XYV×VXVYV
5 4 notbii ¬XYV×V¬XVYV
6 5 anbi2i XYA¬XYV×VXYA¬XVYV
7 opprc ¬XVYVXY=
8 7 eleq1d ¬XVYVXYAA
9 8 pm5.32ri XYA¬XVYVA¬XVYV
10 6 9 bitri XYA¬XYV×VA¬XVYV
11 3 10 bitri XYAV×VA¬XVYV
12 2 11 bitri XYAA-1-1A¬XVYV