Metamath Proof Explorer


Theorem elnonrel

Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020)

Ref Expression
Assertion elnonrel X Y A A -1 -1 A ¬ X V Y V

Proof

Step Hyp Ref Expression
1 nonrel A A -1 -1 = A V × V
2 1 eleq2i X Y A A -1 -1 X Y A V × V
3 eldif X Y A V × V X Y A ¬ X Y V × V
4 opelxp X Y V × V X V Y V
5 4 notbii ¬ X Y V × V ¬ X V Y V
6 5 anbi2i X Y A ¬ X Y V × V X Y A ¬ X V Y V
7 opprc ¬ X V Y V X Y =
8 7 eleq1d ¬ X V Y V X Y A A
9 8 pm5.32ri X Y A ¬ X V Y V A ¬ X V Y V
10 6 9 bitri X Y A ¬ X Y V × V A ¬ X V Y V
11 3 10 bitri X Y A V × V A ¬ X V Y V
12 2 11 bitri X Y A A -1 -1 A ¬ X V Y V